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The paper investigates the problem of optimal control of solutions to the Cauchy and
Showalter—Sidorov problem for an incomplete semilinear second order Sobolev type equation
in Banach spaces. Sobolev type equations are understood as operator-differential equations
with an irreversible operator at the highest time derivative. Based on the theorem on the
existence and uniqueness of a solution to an inhomogeneous equation, a theorem on the
existence of a solution to the optimal control problem is proved. The solution is formally
presented as a Galerkin sum and then, based on a priori estimates, the convergence of the
Galerkin approximations in the *-weak sense is proved. To illustrate the abstract theory,
a study of the optimal control problem in a mathematical model of wave propagation in
shallow water under the condition of conservation of mass in the layer and taking into
account capillary effects is presented. This mathematical model is based on the IMBq
equation and the Dirichlet boundary conditions.
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Introduction

Let 2 C R™ be a domain with boundary 92 of class C*°, T' € R,. In the cylinder
2 x (0,T) consider inhomogeneous modified Boussinesq equation (IMBq)

A= A)ay — a*Ax — A(2®) = u(s,t), (s,t) €Qx (0,T) (1)
with homogeneous Dirichlet boundary condition
x(s,t) =0, (s,t) €0 x(0,T), (2)

where A\, a € R.

Equation (1) has many applications in various fields of natural science. For example,
it models the propagation of waves in shallow water, taking into account capillary effects.
In this case, the function = z(s,t) determines the height of the wave. In [1] a (modified)
mathematical model of wave propagation in shallow water in a one-dimensional domain was
studied and a soliton solution to equation (1) was obtained. In [2] the existence of a unique
global solution to the Cauchy problem for equation (1) was proved, with A = 1, = 1.
In [3] the interaction of shock waves is studied using equation (1).

In all the works listed above, an essential condition is the continuous invertibility of the
operator at the highest derivative with respect to the variable t. However, the operator
A — A can be degenerate. Equations that are not solvable with respect to the highest
derivative with respect to time, according to [4], are usually called Sobolev type equations.
Using the theory of relatively p-bounded operators developed by G.A. Sviridyuk and his
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students [5, 6], it is shown [7] that in suitably chosen spaces the problem (1)—(2) can be
reduced to an abstract semilinear Sobolev type equation of the second order

Li+ Mz + N(z) = u, (3)

where 7 is the second derivative with respect to t.

Then, using the phase space method, a theorem on the existence of a unique local
solution to the Cauchy problem and the Showalter—Sidorov problem is proved, and it is
also shown that if the operator /N is monotonic, the phase space is a simple manifold.

In this paper we study the problem of optimal control of solutions to the Cauchy
problem

z(0) =x9, (0)=m (4)

and solutions to the Showalter-Sidorov problem
P(z(0) —20) =0, P(2(0) —z1) =0 (5)

for equation (3). Here P is some spectral projector along the kernel of the operator
L. Obviously, problem (5) is more general than (4). In trivial case (existence of the
inverse operator L) both problems coincide, that means that their solutions also coincide.
A detailed review [8] shows that the Showalter—Sidorov problem for the Sobolev type
equations is more natural than the Cauchy problem.

To formulate the optimal control problem, introduce the control space 4 and select a
non-empty, closed and convex set 4,4 in it, witch we called the set of admissible controls.
Let us pose the optimal control problem as a condition for minimizing the functional

J(x,u) — inf, u € Uyy. (6)

The specific type of functional will be determined later.

The optimal control problem allows you to balance between proximity to the desired
state and the amount of labor and energy costs. In Sobolev type models, the optimal
control problem was first considered in [9]. For semilinear Sobolev type models of the first
order, the optimal control problem was studied in [10,11]. Problems of optimal control of
oscillatory phenomena arise in such technical problems as problems of calming the motion
of a ship, a crane boom, organizing vibration protection, and others. The importance of
solving problems of optimal control of oscillatory processes has already been repeatedly
noted in [12-15].

1. Phase space method

Previously, problem (4), (5) was studied by methods of the theory of relatively p-
bounded operators. Let us present some of its statements. Let X,%9) be Banach spaces, the
operator L € £(X;92)) (i.e. linear and continuous), and the operator M € CI(X;9)) (linear,
closed and densely defined). The set

pH(M) ={peC: (uL— M)™" € L(D; %)}

is called the resolvent set of the operator M with respect to the operator L (or, L-resolvent
set operator of the M). The set C\pl(M) = o¥(M) is called the spectrum of the operator
M with respect to the operator L (or, L-spectrum operator of the M).
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Operator functions (uL — M)™", Rl = (uL — M)™'L, L = L(uL — M)~" with the
domain p%(M) is called, respectively, resolvent, right resolvent, left resolvent operator of the
M with respect to the operator L (in short, L-resolvent, right L-resolvent, left L-resolution
of the operator M).

The operator M is called (L, o)-bounded if

Ja>0Vu e C: (Jju| >a) = (ueph(M)).
Let the operator M be (L, o)-bounded. Then the operators

p-L /RL(M)d)\ and QQ =

271

jm / LY (M)dA

T T

are projectors in the spaces X and 2), respectively. Here I' = {\ € C : |A\| = r > a}.
Further, by virtue of the Splitting Theorem [6], the projectors P and @ split the spaces
X, 92 into a direct sums: X = X°® X! and ) = 9° ® Y*, where ker P = X%, imP = X!,
ker Q@ = 9°, imQ = 2'. And the operators H = My 'Ly € £(X°), S = L' M, € £(X!). If
M is (L, 0)-bounded and the operator H is nilpotent of degree p, then the operator M is
called (L, p)-bounded .

Let *3 be some Riemannian manifold without boundary modeled by the space X. We
say that a pair (x,y) belongs to the tangent bundle of the set B if 2 belongs to 8 and the
pair (z,y) belongs to the tangent space T, at point x i.e.

(,y) e TP <z € PA(x,y) € T,)B.

Call the set B the phase space of equation (3) if
1) for any (xg,z1) € T*B there is a unique solution to problem (3), (4);
2) any solution z = xz(t) to equation (3) lies in P as a trajectory.

Let ker L # {0} and the operator M be (L, 0)-bounded, then, by virtue of the splitting
theorem [6], equation (3) can be reduced to the equivalent system of equations

{ (H—Q)(M+N>( )= (I-Q)u,
i = Li'Q(M + N)(x) + Ly ' Qu,

where x! = Pz. Let (I — Q)u be independent of ¢, then the set

P={reX:I-Q)M+N)(x)=10-Q)u}

is the local phase manifold of equation (3). Note that is, in [7] the existence of a unique
local solution was proven.
In addition, we need an auxiliary lemma.

Lemma 1.1. ( [16]) If f € LP(0,T;%) and f € LP(0,T;%) (1 < g 00), then f,

after perhaps changing on a zero measure set from the interval (0,7"), will be a continuous
mapping [0, 7] in X.
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2. Solving the Initial Problem for an Inhomogeneous Equation

First, we need to solve problem (3), (4). To do this, construct several functional spaces.
Let H = (H,(-,-)) be a real separable Hilbert space. Let us define dual pairs of reflexive
Banach spaces (X, X*) and (L?, L?) with respect to duality (-,-) such that there is a chain
of dense and continuous embeddings

P —X— H<— X" < L% (7)

In the given spaces define operators L, M, N satisfying the following conditions:
(C1) L € L(X,X") is self-adjoint non-negatively defined and Fredholm operator;
(C2) M € L(X,X") is self-adjoint non-negatively defined;
(C3) N € C"(LP,L%),r > 1 is s-monotone, p-coercive and homogeneous of order p — 1
operator, with symmetric Frechet derivative.
Due to condition (C3), the operator N satisfies the equality

d

%<N(*/E)vl‘> = (p - 1)<N(ZL‘),$>

In addition, define the spaces of distributions (of functions with values in a Banach
space) L>(0,7;X N LP) and L*>(0,7T;coimL), where X = ker L & coimL. The spaces
conjugate to them are constructed using the Dunford—Pettis theorem: (L>°(0, T; XNLP))* ~
LY0,T;X* U L) and (L>=(0,T;coimL))* ~ L'(0,T; X*).

Let A\; be the eigenvalues of the homogeneous Dirichlet problem for the operator
L, numbered in nonincreasing order taking into account multiplicity, and let ¢, be the
corresponding eigenfunctions, orthonormalized with respect to the inner product in H.
Moreover, the linear span of {¢1, v, ..., pm} for m — oo is dense in X.

Theorem 2.1. Let conditions (C1), (C2), (C3) be satisfied and v € L(0,T; L9).
Then for any (xg, 1) € T,,*B such that zo € XN LP, x; € coimL there is a unique solution
to problem (3), (4) x = x(s,t) such that x € L*>(0,7; XNLP) and & € L*>(0,T; coimLNX).

Proof. Further symbol C will denote different constants. We will search a solution to
problem (3), (4) in the form of the Galerkin approximation [16]

m

2™(t) =) ai(t) . (8)

k=1

Find the coefficients a}'(t) from the system of algebraic-differential equations

<Lim7 901€> + <Mxm? 9019) + <N(xm)7 9019) = <u7 90/6>7 1<k<m. (9>
<xm(0)7 9019) = <x0790/€> = ﬁl::n7 <xm(0)790k> = <x1730k> = ﬁ)/l::na 1<k< m, (1())

m m
where 2 = > B¢k — xp in X for m — oo, and 27" = > V"¢, — 21 in X for m — oo.
k=1 k=1
By classical results, there is a unique local solution ™ = z™(s,t), t € [0,¢™].

Let us obtain a priori estimates. Multiply equation (9) by a*(¢) (1 < k < m) and sum
over k from 1 to m. We get

(L™, &™) + (Ma™, &™) + (N (2™), &™) = (u, &™), (11)
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In the space coimL N X introduce the norm |z|? = (L%, ). By virtue of the Courant
principle this norm is equivalent to the norm in space X.

Using the self-adjointness of L, M, we obtain 2(Li™ i™) = (L™, &™),
2(Mz™, &™) = 4(Ma™ z™). Due to the condition (C3) (p — 1)(N(z™),i™) =

4 (N(z™),z™). Then equation (11) takes the form

&l

d cm12 m .m 2 m m\ | _ m
% ]3: ’ +<M.1' , T >+E<N(x )7-1' >} _2<u7x > (12>

Let us integrate it on the interval [0,t],t < t,,

t

2
[+ (Ma™, 2™) + —= (N (&™), 2™) =2 /(u, ") ds + o' + (Mag', o)+
P / (13)
2
+F<N($81)7 g")
Then
- m |2 m ,.m 2 m||P
7+ (Ma™,a™) + Oy == "}, <
t
.. m m m m 2 m -
<2 [ fulls 87 s + 127 P + (Mo, af) + O = NG < ”
tO t
.. m m m m 2 m -
< [ alods+ [ 16 ods + o' + (M, ) + C¥ -2 NG
0 0
Therefore
t t t
P <O+ / lém 2, ds < C + / Jém2ds < C + / ™ Pds,
0 0 0
and, by virtue of Gronwall’s inequality,
2"* < Ce' <O, tel0,T)
Since the right-hand side of the inequality (14) is bounded, then the inequality
™7 + (M2™,2™) + Cy ||z < C (15)

p—1
holds. The constant C' does not depend on t,, and, therefore, t,, = T.

Remark 2.1. The sequences 2™ and ™ are bounded in the spaces L>(0,7;%X N
LP) and L*(0,T;coimL), respectively, being the dual spaces for separable Banach
spaces L'(0,T;X* U L9) and L*(0,T;X*). Therefore, we can choose *-weakly convergent
subsequences x™ and 2" in them such that
™ — x *-weakly in L>(0,T;X N LP)
™ — & *-weakly in L>°(0,7"; coimL). Here, 2™ is understood as a generalized derivative
in the space of distributions.
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Since the operator N is p-coercive then
(N(z™),a™) < [IN(@™)|zalla™ e < CV 2™ |7 2™ [0 = CV 2™ (0, (16)
and, therefore, N(z™) are bounded in the space L4(0, T; X*ULY), then N(z™) — g weakly

in L9(0,7; X" U L9).
Let us show that N(z) = g. From the monotonicity of the operator N it follows that

X™ = (N(z™) — N(2),2™ —z) >0, Vze LP(0,T;XNLP).

By (13)
t
X = 2/<u’firml>d8+!x?l\2— "™ 2+ (Mg, 2g") — (Ma™ , a™) + ——(N(25"), 25" )~
p

0

2 my m
— NG, - (N(E)a™ ).

Due to the properties of weakly convergent sequences, we have liminf |27 (¢)[*> >
m;—r o0

|z(t)|?, therefore
thUpXml < <g,l‘> - <g,Z> - <N(Z),I - Z)

Then we get
(9.2) = (g9,2) — (N(2),z — 2) 2 0.
Put z =2 — hw,h > 0,w € LP(0,T; B), then

<g—N(x—hw),hw> > 07

(g — N(x — hw),w) > 0.

Letting h — 0, due to the continuity of N and Lebesgue theorem on the majorizing
sequence, we obtain

Due to the arbitrariness of the choice of w, we have g = N(z).
Now we can go to the limit in equality (9), directing m; to infinity. Let & be fixed and
my; > k, we get

(L™, o) + (Mz™ o) + (N (™), ) = (u, k). (17)
Thus, from (17) we get
d2
@@% or) + (M, o) + (N(u), o) = (u, ). (18)
Due to the density of the system of functions {¢y }7; in the space X for m — oo, and the
arbitrariness of the choice of ¢y, equality (18) holds for arbitrary v € X

L (L) + (M) + (N(@).0) = {u.0). (19)
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Due to the expansion of the initial functions in the series 2™ (0) = z? — z weakly in
X and by Remarks 2.1 2 (0) — z(0) in X, therefore z(0) = zo.
Due to Remark 2.1

(™, o) = (&, o) *-weakly in L=(0,T)
and, therefore, taking into account Lemma 1.1, we get

<j;ml(0)7 9019) - <jj(t>7 @kﬂt:o = <x(0)7 @k)'

On the other hand, due to the expansion of the initial functions in the series

(2™(0), r) = (71, Pr)-

Thus,
<£If(0)’ @k) = <33'1, @k)a vV k.

Thus, the function x = x(s,t) satisfies the equation and initial conditions, i.e. it is a
solution to (3), (4).

Uniqueness is proved by contradiction. Let z1(s,t) and xs(s,t) be two different
solutions to problem (3), (4). Denote w(s,t) = xz1(s,t) — x2(s,t). Repeating the reasoning
stated above, we arrive at the inequality

t t t
0 < [l ads < [ om s < [ jom s
0 0 0

and by virtue of Gronwall’s inequality,
l™* <0, tel0,T].

Taking into account the zero initial condition, we obtain that w(s,t) = 0.

It is not difficult to prove the following theorem about the existence of a solution to
the Showalter — Sidorov problem.

Theorem 2.2. Let conditions (C1), (C2), (C3) be satisfied and v € L4(0,T; L9).
Then for any xy € X N LP, x; € coimL, there is a solution = z(s,t) to problem (3), (5)
such that z € L*>(0,7;X N LP) and & € L>(0,T; X).

3. Optimal Control Problem

Consider the optimal control problem (3), (4), (6). Construct the space iU =
L?(0,T; L) and define a non-empty closed and convex subset 4 in it. Construct the
space X, = {z|r € L>*(0,T; XN LP), & € L>(0,T;coimL N X).

Definition 3.1. The pair (z,4) € X, X 4 is called a solution to the optimal control
problem if

J(z,a) = (inf)J(x,u),
where the pairs (z,u) € X, X 4 satisfy problem (3), (4). The function @ is called an
optimal control.
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Remark 3.1. The pair (z,u) € X, x,4 satisfying problem (3), (4) for which J(z,u) <
+00 is called admissible element of the problem (3), (4), (6). Since the set is ,q # &,
then for any u € i,y C U by Theorem 2.1. there is a unique solution = x(u) to problem
(3), (4).

Let us formulate and prove a theorem on the existence of optimal control.

Theorem 3.1. Let conditions (C1), (C2), (C3) be satisfied. Then for any (xg, z1) €
TB, T € R,, there is a solution to problem (3), (4), (6).

Proof. From the theorem on the existence of a unique solution to problem (3), (4) it
follows that the operator

d
L— + M+ N(-) | : X,
( st M+ ()) X, - u

is a homeomorphism. Thus we can define the penalty functional used in (6) in the form

J(@,u) = J(u) = B(l2(t) = 2000, + 180) = 202075+

(20)
+(1 - ﬁ)Hu(t)H%Q(O,T;Lq)'
Let {un,} C Hoq be a sequence such that
ot TCm) = 1)
Then from (20) it follows that
lu@)ll7207:00) < C (21)

for all m € N. From (21) it follows that from the sequence {u,,} we can choose a weakly
convergent subsequence, which is denoted by {u,,} again, such that w,, — @ . By Mazur’s
theorem, @ € 4. Denote by x,, = x(u,,) the weakly generalized solution of equation

Li, + Mz, + N(2) = U, (22)

A priori estimates can be obtained in the same way as in Theorem 2.1. Now we can
go to the limit in equality (22), directing m to infinity

Li+ Mz + N(%) = a. (23)
Thus, & = Z(u) and liminf J(z,,) < J(Z). Therefore, Z is a solution to the optimal control
m—0o0

problem (3), (4), (6).

It is not difficult to prove the theorem on the existence of a solution to the problem of
optimal control of solutions to the Showalter—Sidorov problem (5). So, we can formulate
the theorem

Theorem 3.2. Let conditions (C1), (C2), (C3) be satisfied. Then for anyxg, z; €
X, T € Ry, there is a solution to optimal control problem (3), (5), (6).

4. Application to the Study of Mathematical Model

Reduce problem (1), (2), (4) to problem (3), (4). For the space H take the Sobolev
o —1
space W, () with inner product

(fi, fo) = /f1f2d=5‘7 Vi, fo GVCf/;l (Q), (24)
0
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where f; is a generalized solution to the Dirichlet problem (2) for the equation A fi=h
in the domain €.

Set X = L? and X* = (L?)* with respect to the duality (24). Then the chain of dense
and continuous embeddings (7) takes place. Define the operator L : X — X* by formula

(Lx,v) = /(xv + Axd)ds.

Condition (C1) is satisfied for A > A;.
Condition (C2) is satisfied if the operator M : X — X* is defined by formula

(Mx,v) = a2/xvds.
Q

Define the operator N(z) : L* — L3 by formula
(N(x),v) = /x?’vds.
Q

Its Frechet derivative

|(N.(v), w)| =3 /x%wdm > const||z||zz]|v |pa||w]| pa
Q

is symmetric and bounded due to the Holder inequality.
The operator N is s-monotone
(N!(v),v) = 3/x202d5 >0
Q
and 4-coercive
(V@2 = [ wads = ol (V(@),v) = [ uuds = olallolle = 2] olue
Q Q

Thus, condition (C3) is satisfied.
Let v be an eigenfunction corresponding to the eigenvalue A; of operator L and (I—-Q)u
be independent of ¢t. Then the phase space has the form

Az e X (—a?Ar — A(2?),v) = (u,0)}, A=A,
q3 - { %, A > A

Theorem 4.1. For any (x¢,z1) € T8, T € R4, there is a solution to problem (1),

(2), (4), (6).
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5. Computational Experiment for Optimal Control Problem

Present the results of information processing using the developed algorithm, which
was implemented in the Maple environment. Information processing was carried out on
the basis of computational experiments.

Example 5.1. Let the domain = [0, 7] and the parameters of the equation \ =
—1,a = 2. Then the inhomogeneous modified Boussinesq equation takes the form

(1 — A)ay(s,t) — 4Ax(s, t) — A(2(s, 1)) = u(s,t), (s,t) € [0,7] x (0,7) (25)
with homogeneous Dirichlet boundary condition
z(0,t) =z(m,t) =0, te(0,7) (26)
and the Cauchy initial conditions
z(s,0) =sin(s) — 0.5sin(2s), z:(s,0) =sin(2s), s € (0,7). (27)

To solve control problem (25)—(27), (6) numerically, we use the decomposition method
and linearize equation (25)

(1= A)zy(s, 1) — 4Ax(s,t) — A(y*(s, 1)) = u(s, 1),
y(s,0) = a(s,1).

Define the penalty functional from (6) as follows (the symbol " denotes the derivative with
respect to s).

J(x,u) = B0 [(lx(s,t) = 2(s, )70 + |2/ (s, 1) = 2'(s, 1)) dt+

(1 - >0f<||y<s,t> 25 DIl + [y (s,8) — (s, 0)[22)dt+ 28)
(lly(s. t) — (s, 5 + 1y (5,1) — 2'(s, 8)|[2)dt

T
-5 /Hu V3dt + 1
0 0

Search the solution to problem (25)—(27), (6) in the form of an expansion into the
Galerkin sum up to the second term by eigenfunctions of problem (26) for the Laplace
operator

o5,0) = 2 3 an(t) sinhs),

y(s,t) = %kilbk(t) sin(ks), wu(s,t) = kilck(t) sin(ks).

3 o

The coefficients of the Galerkin sums for the auxiliary function y(s,t) and the control
function u(s,t) according to the Ritz method are represented as polynomials

2

2
t)=> byt', alt)=> oyt’, k=12
=0

J=0
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It must be taken into account that

dak

dt

Note that equation (25) is degenerate. In order to fulfilled the condition
(I — Q)u is not depend on t, ¥Vt e (0,T).

ka = Gk(O), bkl = (0)7 k= 17 2.

Set set ¢1; = 0, ¢12 = 0. Then the control function will take the form u(s, ) = 2(c9 sin(s)+
c2(t) sin(2s)). The phase manifold of equation (25) has the form

P =< x(s,t):day(t) + < (% Z ag(t) sin(ks)) , sin s> =Ciop - (29)

Set the parameters 6, 3 from the interval (0,1), and take the parameter r as large as
possible, so that the solution z(s,t) and the auxiliary function y(s,t) are close enough, for
example put » = 100.

Using the branch and bound method find the minimum value of the functional and its
minimum point.

Using the developed method, the information was processed and the minimum value
of the functional was found. For the time interval [0,1] J,;, = 16.728, and for the time
interval [0,25] Ji = 2511.045. In both cases, an approximate solution to the optimal
control problem, i.e. a pair of functions: optimal control and system state was found.

S
3

[

8
5

Fig. 1. Graph of function z(s,t) a) for ¢t € [0,1]; b) for ¢ € [0, 25]
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OIITUMAJILHOE YIIPABJIEHUE PEIIIEHUSAMU 3AJIAYU
KOIIIN J1J1 HEIIOJIHOTO ITOJIYJIMHENTHOTO
VPABHEHUS COBOJIEBCKOT'O TUIIA BTOPOTO
TTOPSITTK A

A. A. Bamvrwasesa, E. B. Bwiukos

B pabore uccienosana 3ajiada ONTUMAJILHOIO YIIPABJIEHUs] PeIleHUsIMA 3a1a9u Komu
u loyonrepa — CutopoBa Jjisi HEIOJIHOTO HOJIYJIMHERHOIO ypaBHEHHSI COOOJIEBCKOTO TUIIA
BTOPOrO TOPsIIKa B DAHAXOBBIX ITpocTpaHcTBax. 1lom ypaBHeHUsIMA CODOJIEBCKOTO THIIA, ITO-
HUMAIOTCS OII€PATOPHO- M depeHnaIbHble YPABHEHNS ¢ HEOOPATUMBIM OIEPATOPOM IIPU
crapieil mpou3BOAHON 10 Bpemenn. Ha OCHOBe TeOpeMbl O CyIECTBOBAHUU U €IUHCTBEH-
HOCTH peIleHusi HEOTHOPOIHOIO YPaBHEHUsI JIOKA3aHa TEOPeMa O CYIIECTBOBAHUU PEIIeHS
3aJ[a9n ONTUMAJILHOTO yIIpaBjeHus. Pemrenne ¢hopMajbHO IIPeICTaB/ISeTCsl B BUJE TaJiep-
KUHCKOW CyMMBI M 3aT€M, HA OCHOBE AIlPHOPHBIX OIEHOK, JIOKA3BbIBAETCS CXOIUMOCTDH Ia-
JIEPKUHCKUX IpHOImKeHnii B *-cnaboMm cmbicae. g mmocTpanun abcTpaKTHOH Teopun
[IPOBEJICHO HCCJIEIOBAHIE 3329 ONTUMAJIBLHOIO YIIPABJIEHUS B MATEMATHIECKON MOIe/H
pPACIpPOCTPAHEHNs BOJIH HA MEJIKOI BOJE IPU YCJIOBUHU COXPAHEHUS MACCHI B CJIOE U C ydUe-
TOM KalWJLISPHBIX 3¢ dekToB. /laHHas MareMarudeckas MOJeIb OCHOBaHA Ha ypaBHEHHUH
IMBq, kpaeBbix ycioBusix upuxie.

Karouesvie cao6a: Mamemamuieckas modeav; moduduyuposarnoe ypasnenue byccu-
Hecka; 3a0a46 ONMUMAAGHO20 YNPABAEHUA; YUCAEHHOE UCCAEI08ANHUE; NOAYAUNETHOE YPaG-

HeHue coboae8cKo20 Muna 61MOopPo2o nop;zd%a,
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