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In this paper, mixed boundary value problem for screened Poisson equation is
considered in a geometrically complex domain. The asymptotically optimal method of
iterative extensions is described. An analysis of screened harmonic system is carried out with
the method of iterative extensions. An algorithm is written that implements the method of
iterative extensions in matrix form. An example of calculating the bending of a membrane
on an elastic base is given.
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Introduction

This work devotes to the development of a scientific direction, which bases on the
method of iterative extensions for the analysis of a screened harmonic system — a mixed
boundary value problem for an inhomogeneous screened Poisson equation on vertical
displacements of membrane points located horizontally on elastic base, under the vertical
pressure with homogeneous Dirichlet boundary condition and homogeneous Neumann
boundary condition.

i: — A+ kit = flg, @ C R?, (1)
ulr, =0,
ol
. =0
0n|F2 ’

where
8Q:§, s:FlLJFg, Flﬂng(D

Difficulties in solving these problems arise due to the complex geometry of the domain,
the presence of the Dirichlet boundary condition, and the high order of differential
equations. Promising for solving such problems fictitious domain method [3] turns out
to be not asymptotically optimal. The authors use an explicit construction of operators
for the continuation of discrete functions from a curvilinear boundary with preservation
of the norm and obtain an asymptotically optimal fictitious domain method for a second-
order elliptic equation. Without diminishing the achievements of this approach, we can say
that this method is quite difficult to implement and is not universal. Thus, we can conclude
that the solution to these problems have important practical applications, have problems
associated with this method. For constructing new asymptotically optimal method, we
use the well-known fictitious domain method. In this method, on example of physical

2023, vol. 10, no. 3 3



M. P. Eremchuk, A. L. Ushakov

system from theory of elasticity, we increase the response of the underlying surface
and the rigidity of the material in continuation. We minimize the error in a stronger
norm than the energy norm of f. Thus, to select the iterative parameters, we use the
method of minimum residuals [4] and specify the conditions sufficient for the convergence
of the iterative process. In this paper, we reduce the second-order elliptic problem to
a discrete analogue of the screened Poisson equation in a rectangular domain with a
homogeneous Dirichlet boundary condition on two adjacent sides and a homogeneous
Neumann boundary condition on the other two sides of the rectangle. Solution to this
problem exists, and is unique. The question of existence and uniqueness of such problem
considered, for example, in [1, 2|.

In this paper, we use reductions of boundary value problems in variational form to
mathematical systems of a discrete form, which accurately preserves the properties of the
original boundary value problems at the difference level, using the method of summation
identities, the method of approximation by parts, and the finite element method [5].

We consider it important to reduce solutions of the studied boundary value problems to
solutions of systems of linear algebraic equations with matrices. The number of non-zero
elements in each row does not exceed five elements in these matrices. We can obtain
solutions to these systems, using well-known marching methods [6, 7]. In this paper,
we reduce the solutions to the original problems to the numerical solutions to discrete
analogues of the screened Poisson equation in a rectangular domain, and finally to the
solution to systems of linear algebraic equations with five-diagonal matrices.

The paper presents an analysis of a screened harmonic system — a boundary value
problem with the Dirichlet boundary condition for the screened Poisson equation. We
consider the screened harmonic system and its continuation in the Sobolev space. We
carry out the analysis of the extended screened harmonic system by the method of iterative
extensions in the Euclidean space. We write out the algorithm for the method of iterative
extensions, which solves the problems of a screened harmonic system in the Euclidean
space. We give an example of calculating the bending of a membrane on an elastic base.

1. Screened Harmonic System in the Sobolev Space

We consider the screened harmonic system in the Sobolev space. From the theory of
elasticity [2, 6], the energy of a deformed membrane is:

. 1. 1 [ . Ny
B, (1) = 5T / (2, + i, )d, + 3 / K2 dQy, — / Pit,dSy,, w € {1,11},
Qo

w w

where P, is pressure, K, is coefficient of stiffness of the elastic base, T,, is coefficient of
tension of a membrane, Q, is flat bounded domain with piecewise smooth boundary of C?
class without self-contacts and self-intersections, 9, =35, § =T, 1Ul 2, TN, ; = 0,
if i #37,14,5=1,2, I',;, i = 1,2 is the union of a finite number of open, disjoint subsets
on a boundary 09, of arcs of smooth curves of C? class, 1, is desired movement of the
membrane. Membrane energy variation equates to zero

6F,(u,) =T, / (g, Dy + Ty V) Ay + / K, 0,dQ,, — / P,o,dQ, = 0,
Qu

Qo

Qo
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if 0, = Oty Ky = Ko /Ty, f, = P,/ T, then

/ (U, Vo, + Uy V) + Kol B0 ) dSY, = / FuB0,dS2,.

Qw Qy
We integrate by parts and get

- > > aﬂw -« [~
(— Ay, + Kyl )0,dS, + a—vwdsw = | fu0,dQ,,
Ny
Qu Sw Qu

where n,, is outer normal to 9€,. If membrane fixed on I, 1, and free on I, 5, then we
obtain boundary value problem with mixed homogeneous boundary conditions:

— A, + Kyly, = fw, (2)
O,
ol =0, 2l .
Fw,l anw Fw,2

Let us formulate a variational boundary value problem with mixed homogenous
boundary conditions:

Uy, € H,: A,(iy, 1) = F(0,) Vo, € H,, F, € H',, (3)

- 0}
Fw,l

on flat bounded domain 2, with piecewise smooth boundary of C? class without self-
contacts and self-intersections.
Sufficient to assume the existence and uniqueness for problem (3)

where the Sobolove space

H, = H,(Q,) = {@w € Wy () : v,

ety e € (0;400): 1[0l a,) € Awltu: 00) < calltulliyia,) Yoo € H,,

This condition always guarantees the uniqueness of the solution for «,, € (0;+00) and any
combinations of given boundary conditions.

We solve mixed boundary value problem for the screened Poisson equation with the
Dirichlet boundary condition i. g. with w = 1, k1 > 0, I';; # 0, which we consider as a
harmonic system

—Aﬂl + /4,1?11 == fla (4>
av
| =0, 2 .
T11 Ony T2

Additionally, we consider a mixed homogeneous fictitious problem for the screened Poisson
equation, i. g. with w =1I, fif =0, g =0

— Aty + Kty = 0, (5)
. Otin
Uit = 0, av = 0

I i 1IN
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We propose fictitious continuation of the original boundary value problem for the
screened Poisson equation in variational form:

€ V: Ay(a, 1) + An(a,9) = Fy(I,9) Vo € V, (6)

second domain supplements solution domain of the original problem in the first domain
on the plane to a rectangular domain

Ql U QH - H, Ql N QH - @, QhQH C R2.

In the continued problem, we use the operator of non-orthogonal projection of the
extended space onto the subspace of the solution to the continued problem

I: V=V, Vi =iml, I, = I%.
We introduce subspaces of the extended solution space

%ZW)(H)Z{@3€‘7:@3

= 0}, Vo=Vi@ Vs,
M\Qup
Vo = Va(IT) = {tp € V': A(ta, ) = 0 Yoy € Vo },
V=Niehel=VieV, i=Vel, Vii=VeV,
We consider direct sums of subspaces in the scalar product generated by the bilinear
form

A, 0) = Ay (@, ) + An(@,9) Va,0 € V.

We assume that the bilinear form gives a normalization of the extended solution space
equivalent to the normalization of the Sobolev space

er, ca > 0: e [[0lffy ) < A0, 0) < eall0lf gy Vo€V,

Thus, solution to continued problem exists, and is unique. This is the solution to the
original problem on the first domain with zero continuation on the rest of the rectangular
domain.

Proposition 1. The following equalities take place:
Aw(fbo,’lv)g) = Aw(?v)g,’gbo) =0 vao c ‘v/o, VQV)Q c ‘72, RS {1,11}

Solution to problem (6) @ € Vi exists, is unique on €y, and matches with the solution
to problem (3) with w = 1, and equals zero on Q.

Let us consider the discretization of the problem of the continued screened harmonic
system on a finite-dimensional subspace with the following type of boundary conditions,
when

IT=(0;b1) X (0562), I't = {br} x (0;02) U (0;b1) x {bo},
PQ = {0} X (0, bg) U (0, bl) X {O}, bl,bg - (0, +OO)
In a rectangular domain, we introduce a grid
(i) = (1= 1,5)hi; (7 = 1,5)ha),
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hl :bl/(m—1,5), hgzbg/(n—1,5), 2':1,2,...,m, j: 1,2,...,71,, m—2,n—26N.
We introduce grid functions on the set of nodes of the grid
vij=v(r5y;) €ER, 1=1,2,...om, j=1,2,....n, m—2,n—-2€N.

We apply the completion of grid functions, taking into account the selected boundary
conditions, using linear basis functions

O (z;y) = U ()0 (y), i=2,....m—1,j=2,....n—1,m—2,n—2€N,
Ui (z) = [2/i] Y(z/hy —i+3,5) + U(x/hy —i+2,5),
U2 (y) = [2/7] W(y/hs — j +3,5) + W(y/hs — j +2,5),
z, ze€l0;1],
U(z) = {2 -z, ze€ll;2]
0, z¢(0;2).

Here, [e] is integer part of number. We assume that the values of the basis functions equal
to zero outside the rectangular domain

O (z;y) =0, (v;9) 1, i=2,....m—1,j=2,....n—1, m—2,n—-2€N,

Combinations of basis functions are a finite-dimensional subspace in the solution space of
the extended problem

We are aware of convergence estimation of the following form [1]:
|4 — a“wfl(n) < ch™T™ ||71||W2m2(n)7 }Lli% [t — aHWQ(H) =0, h=maz{hi, ho}.

Let us present the continued problem on the introduced finite-dimensional subspace in the
variational form

aeV: Ay(i, [10) + An(a,0) = Fi(Lo) Yo e V. (7)

The solution to the continued problem exists, and is unique on a finite-dimensional
subspace. On a finite-dimensional subspace, this is the solution to the original problem on
the first domain with zero continuation on the rest of the rectangular domain.

2. Analysis of the Continued Screened Harmonic System

Approximating the problem of the continued screened harmonic system using a finite-
dimensional subspace, we obtain the system of equations:

ucRY: Bu=f, feR", (8)

We also assume that the projection operator onto the solution space of the continued
problem nullifies the coefficients of basis functions whose supports does not contain
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completely in the first domain. We define the continued matrix and the continued right
side of the system, and get continued problem as the system in matrix form

(Bu,v) = Ay (1, [0) + An(a, ) Vi, 0 € V, (f,7) = Fy(L1d) Yo € V,

<?, E> = (?,E)hlhg = ?@hlhg, U= (Ul,Ug, ce ,UN), S RN, N = (m - 2)(n — 2)

In this case, we enumerate first the basis functions whose supports lie completely in the
first domain. Then we enumerate the basis functions whose supports cross the boundary
of the first domain and the second domain together. Last we enumerate the basis functions
whose supports lie completely in the second domain. With this numbering, the resulting
vectors have the following structure

o= (@, 7,7, 7= @.0.0), F = 7,.0.9.

Here, ’ indicates column vector. We define the matrices generated by the corresponding
bilinear forms

(A, v) = A1 (6,9), (Aqu,v) = An(a, ) Va, 0 e V.

These matrices have the following structure:

All A12 0 0 0 0
Ar= [Aar Ay 0], An= [0 Ap Ass
0 0 0 0 Az Asg
We define extended matrix
A=A1+An= |An Ay Ag| = |An Ay 0| + |0 Ay A
0 Agg A33 0 0 0 0 Agg A33

In fictitious domain method, we solve continued problem in matrix form

A A 0 Uy f1
Bu=f,| 0 Ay A 01 = 0
0 Agg A33 0 0

This is the solution to the original problem in matrix form and this is the zero solution to
the fictitious problem in matrix form

a7 a2 23] el = ) ) - )

For solving problem (8) we use new method of iterative extensions |9, 10, 11]. We
define the extended matrix in a new way, as the sum of the first matrix and the second
matrix multiplied by a positive parameter

Cll 012 0 All A12 0 0 0 0
C=A+~An, |Cy Cy Cy| = |An Ay 0| +v |0 Ap Asxs|, v e (0;400).
0 O3 Cs 0 0 O 0 Azy Asg
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We also assume that the conditions still satisfy on the continuation of functions in the
following form

Iy € (0;400), 72 € [11;+00): 7%<CW2,052> < (Anvs, Anve) < 73(0527052> VU, € Vy,

do € (O, +OO)C <A152, A152> S 042 <A1152, A1152> VWQ € VQ.

The method of iterative extensions is a generalization of the fictitious domain methods,
when we use an additional parameter in extended matrix, and select iterative parameters
with the method of minimum residuals

7 cRY: C(@ —a" ") = —m_ (BT — f), k€N, (9)

VEO € Vl, Y>>, Tg = 1, Te—1 = <Fk_17ﬁk_1>/<ﬁk_laﬁk_l>a ke N\{l}a

where, to calculate the iterative parameters, we sequentially calculate the residuals,
corrections, and equivalent residuals

Pl = Bl _ T, whl = ¢l gl = Bhl ke N,
We define the norm generated by extended matrix
[llc= = V(C?*5,7) Vo eRY.
Lemma 1. For iterative process from (9), estimation is
[~ Tlles < 2/[7° — Tllca.
Theorem 1. For method of iterative extensions from (9), convergence estimation is
7" 2 < el[@ —allcz, & = 2(2/n)(a/7)* ", kEN.

We estimate the sequence of relative errors in a stronger norm than the energy norm from
above by a converging geometric progression.

Remark 1. In iterative process from (9) error belongs to subspace, 1. g. @k €V, VkeN,
approximation belongs to subspace, i. g. u* € V; Vk € N.

3. Algorithm of the Method of Iterative Extensions

For solving problem (8) we use method of iterative extensions. We apply the matrices
generated by the corresponding bilinear forms

(A, T) = Ay (4,9), (Aqu,v) = Ap(a,0) Ya,oeV.

Matrices have the following structure:

A A O 0O O 0
Ar= [Aar Ay Of, An= |0 Ay A
0 0 0 0 Az Asg
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We define extended matrix, as the sum of the first matrix and the second matrix multiplied
by a positive parameter

011 012 0 AH Alg 0 0 0 0
C=A1+7An, [Cn Oy Co| = |Ay Ay O +9 (0 Ag A, v € (0;+00).
0 (3 Css 0 0 0 0 Az Az
We calculate the elements of this matrix using the formulas
CZ'J:hIlh;lC((I)i,q)j), Z,j: 1,2,...,N.

We write out the iterative process in the following form
u e RY: Cu' =T,
e RY: C@" —a"Y) = —m 1 Ap@ Y, e = (LR /(@ LY, ke N\ {1}

Let us present an algorithm that implements the method of iterative extensions for
solving the problem of continued harmonic system on a square.

1. Calculate the value of the squared norm of the initial absolute error, which preserves
throughout all calculations

EO - (?7 ?)hQ
2. Find the first approximation
' Cu' =,
| [Au Arz 0 [ f1
Uy | € Vit [An Asg+7vAp YAl |u3| = 01,7€ (0; +00).
Ty 0 YAz YAss| Tl 0
3. Calculate residual
™l = But! — f = Apu* !, k € N\{1},
7l 0
75_1 - Aogﬂg_l + A23Hl§_1 5 k € N\{l}
Th! 0

4. Calculate the next value of the squared norm of the absolute error

Epq = (L7 YA ke N\{1}.

5. Calculate correction
't T =

Elffl o AH A12 0
U’;‘l €Vy: (A A+ vAse VA
ws ! 0 v Az v As3

™1 ke N\{1},

wh 0
—k—1| _ |=k—1
T Bl
Wy 0

, v € (0;+00), ke N\{1}.

10
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6. Calculate equivalent residual

7 = Bw'! = Ayw* !, ke N\{1},

m 0
Tt = [Apwh ™ + Ayt |, ke N\{1}.
s 0

7. Calculate the iterative parameter
T = (FLTTY /@ T, ke N\{1)

8. Find the new approximation

ki ! wh

s | = |ai | — oy || €V, ke N\{1}.
—k —k—1 —k—1

Us 3 wWs

9. Check the iteration stop criterion

Ey 1 < E*Ey, k € N\{1}, E € (0;1).

If the criterion did not reach, then we repeat everything from step 3.

With a parameter v = 27/2, we present an algorithm, based on iterative factorization
method, for solving problems arising on steps 2 and 5. At each step of iterative process we
write out given system of linear algebraic equations, that we need to solve, in matrix form

TeERY: Co=7, geRY, N=(n—-2)(n—-2).

Let us formulate the method of iterative factorization, an iterative process for solving

a system with a matrix C-:
7 eRY: L@ — 77 = —1_1(Co! — ),
Ti—1 = (Flilawliw/(wlilaﬁlil)a =0 S RNa

A1 opi-t _ 7, T (LL/)—ITZ—I’ ﬁl_l — o,

where
C=A+7Ay, L' =V, +V, +kE, k= /k,
n—1 n—1
(Vx,ﬂ, E> = (—(uiHJ - ui,j)h_l)vi7jh2, Unp,j = Unj = 0, j = 2, Ce
=2 j=2
n—1 n—1
u,v) = —\U; 417 — Ui 4 N Vi Uin = Vijn = 1 =
<vy7 ? > ( ( ,+1g 7])h 1) 7]h2’ ’ ’ O’ - 27
=2 j=2

We write out method formulated above in the form of algorithm:

2023, vol. 10, no. 3
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1. Start with the zero initial approximation

71=0eRN, I=1.

2. Calculate inital residual

Pl=—7 =1

3. Calculate next residual

7l =Cv" - g, 1 e N\{1}.

4. Calculate the value of the squared norm of the initial absolute error, which preserves
throughout all calculations

ei_1 = (P17 HR%, 1 €N,

5. Calculate correction

wleRY: Lw ' =71 leN

6. Calculate equivalent residual

7 l=Ccw!, leN.

7. Calculate the iterative parameter

n =W/ @), LN

8. Find the new approximation

l -1

o =7"''—q_w? leN.

9. Check the iteration stop criterion
e-1 < e’ep, L €N, e =0.001 € (0;1).

If the criterion did not reach, then we repeat everything from step 3.

Let us consider an L-shaped membrane with a very small thickness A relative to its
size, located horizontally on an elastic base, fixed at the boundary except for two large
and adjacent sides. We assume that the points of the membrane belong to the set in a
rectangular coordinate system

(10;2.5] x [0;2.5]\ (1.5;2.5] x (1.5;2.5]) x [—h/2; h/2],
i. g. we consider the problem:

— Ay + 1y = fi, G, f € [0;2.5] x [0;2.5]\(1.5;2.5] x (1.5;2.5],

12 Journal of Computational and Engineering Mathematics
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0, 41 € {2.5} x (0;1.5) U (0;1.5) x {2.5} U {1.5} x (1.5;2.5) U (1.5;2.5) x {1.5},
av
% =0, @ € {0} x (0;2.5)U (0;2.5) x {0}.
n
Here, u; is function of point movement of L-shaped membrane, located horizontally on
elastic base, under the vertical pressure, determined by right side of equation f;.
Let us find the median surface of the membrane, on which vertical pressure P; acts, as
a numerical solution to the problem of a screened harmonic system in the Sobolev space

on an L-shaped domain, when the tension coefficient Ty = 1.5, stiffness coefficient of the
elastic base K7 = 1.5 and pressure

(51

Py = 1.5 ((392 — 384x)(64y® — 169y? + 225) + (642° — 1962% + 225)(392 — 384y))/184%+

+1.5 (642 — 1962 + 225)(64y> — 196y> + 225)/184>.

Let us find an approximation to the solution to this problem, when we specify n = 254
and choose the zero initial approximation. Iterative process of the method of iterative
extensions stops in several iterations, if we specify evaluation criterion £ = 0.001 for the
relative error in a norm stronger than the energy norm. On Fig. 1 we display the last

approximation for n = 254 and the solution.

Fig. 1. Solution and last approximation

We calculate the value of the maximum error on the finest grid for n = 502.

max ||uf; — ]
g = 2=hisnTl — 0.00021.

jmax d]

On Fig. 2 we display the graph of the function of the number of iterations in the iterative
process as the function of number of nodes in the directions of the axes.

2023, vol. 10, no. 3 13



M. P. Eremchuk, A. L. Ushakov

20 p ® < % =2
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Fig. 2. Number of iterations as the function of number of nodes

We solved problem and developed method of iterative extensions, asymptotically
optimal in terms of the number of operations, with automation of control over the optimal
choice of iterative parameters and with a stop criterion, when a given accuracy reached,
for the analysis of screened harmonic systems in geometrically complex domains. Special
mathematical and algorithmic software implement this method and make it possible to
solve model problems of screened harmonic systems and obtain graphical representations
of solutions.
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METO/ NTEPAIIMOHHLIX PACIIIMPEHUI
ITPN1 AHAJIM3E S9KPAHNPOBAHHBIX TAPMOHMNYECKUNX
CUCTEM

M. II. Epemuyx, A. JI. Ywaxos

OnuncpiBaeTcss aCUMITOTUYECKH ONTHUMAJBHBINA 0 KOJMYECTBY OIepalluil HTepamroH-
HBII MeTOJ, pelleHus IpodIEMHBIX KPAeBbIX 3a1a4 JJIsd SKPAHUPOBAaHHOrO ypasHeHus [lyac-
COHA B PEOMETPUYECKHU CJIOYKHBIX 0DJIACTAX KaK aHAIN3 SKPAHHPOBAHHBIX MAPMOHIYECKUX
CUCTEM, OIKMCHIBAOIIUX COOTBETCTBYIOIINE CTAIIMOHAPHBIE (DU3NIeCKUe CUCTeMbI. B nmpupose
U TEXHHUKE, HAIIPUMED, B MEXaHUKE MHOYKECTBO CTAIMOHAPHBIX (PU3MIECKUX CUCTEM OIHACHI-
BaeTCs KPAEeBbIMU 3aaUaMu JJIs 9KPAHUPOBAHHOIO ypaBHeHus IlyaccoHa B reOMeTpuyecKu
CJIO?KHBIX 00JIACTSIX.

Karouesvie caosa: memod GukmueHovi KOMNOHEHM; MEMO0 UMEPAUUOHHDIT DPACUUPE-
HUTL; SKPAHUPOBAHHDIE 2GPMOHUMECKUE CUCTEMDL; IKPAHUPOSaHHOE ypasHerue ITyaccona.
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