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The article reviews the results of solving dynamic measurement problems of two

scientific schools of South Ural State University. The dynamic properties of the measurement

system are critical factors affecting the dynamic measurement error, while the structures

of dynamic measurement system and automatic control system have common principles of

construction. Thus, the methods of automatic control theory were implemented in the study

of dynamic measuring systems. However, dynamic measuring systems are characterized by

the absence of feedback, which required the development of new methods when using the

ideas of automatic control theory. These include the method of modal control of dynamic

characteristics of measuring systems. It led to the development and application of other

methods: iterative principle of measuring systems, method of sliding modes, parametric

adaptation of systems, neural network technologies, numerical methods for solving inverse

problems. The first section of the article is devoted to these studies. The second section

presents the results of the theory of optimal dynamic measurements. The problem of

restoring a dynamically distorted signal is solved here using the methods of optimal control

theory, and the measuring device is simulated by a Leontief-type system. The reduction

of the solution of the inverse problem of dynamic measurements to a direct mathematical

problem allowed us to effectively apply the existing mathematical apparatus of the theory

of Sobolev equations in the case of taking into account the inertia of the measuring system.

Analytical and then numerical studies were initiated to investigate the problem of restoring

a dynamically distorted signal in the presence of ≪noise≫, which led to the creation of

the theory of stochastic equations of Sobolev and Leontief types and the development

of numerical methods. The review focuses on numerical methods based on the idea of

extracting a useful output signal from a known noisy observation and then applying a

numerical method to recover the input signal. In addition, the algorithm of a new numerical

method based on the use of the counting theorem and simple averaging is briefly presented.

The bibliographic review is based on the obtained results, though it is far from being

exhaustive.

Keywords: dynamic measurements; automatic control; optimal control; Leontief-type

systems; optimal dynamic measurement.

Dedicated to the 80th anniversary of South Ural State University

Introduction

When implementing projects of various innovative novelty, it is necessary to conduct
tests at changes in process speed and (or) spatial position in an extremely small time
interval.
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In these cases, the input signal is distorted by the measuring instrument and the output
signal is significantly different from the input signal. In addition, during the measurement
there are disturbances of different nature caused by environmental factors and internal
electrical noise of the measuring instrument. The task of input signal recovery at known
parameters of the measuring system and output signal is the second inverse task of dynamic
measurements. It is considered to be the most difficult task of dynamic measurements [11].

Historically, one of the first works on dynamic measurements is D.I. Mendeleev’s
study 1897, devoted to accurate weighing on laboratory scales. The concept of inverse
and incorrect problems and regularization methods created by A.N. Tikhonov [44]
gave an impetus to the development of the theory of dynamic measurements. In [23]
a small historical sketch highlighted the works by G.I. Vasilenko, G.N. Solopchenko,
V.A. Granovsky, F.L. Chernousko, A.B. Kurzhansky and others and their role in the
development of the theory of dynamic measurements.

The creation and development of the research direction on the application of automatic
control methods in dynamic systems is associated with the works of A.L. Shestakov
and his students [35]. Automatic control systems are structurally different from dynamic
measurement systems in that the input signal is not available either for direct measurement
or for correction. A.L. Shestakov adapted the method of modal control for application
in measuring systems by constructing for it a special structure of a correcting device
in the form of a sensor model. The use of a sensor model having model input and
output signals allows obtaining an estimate of its dynamic error [24]. On the basis of this
method, we proposed a method for calculating the optimal correction device for the RMS
error of a dynamic system with a single input, and methods for analyzing the dynamic
error depending on the parameters of the measuring system. It should be noted that
A.L. Shestakov received several certificates of authorship based on the results of these
studies.

One of the directions of research was the study of properties and features of dynamic
measuring systems with iterative principle of restoration of the measured signal [25]. It
showed high noise immunity of such systems in the presence of noise at the sensor output.

The method of modal control of dynamic properties of measuring systems in the case
of an observable state coordinate vector of the primary transducer was developed by
D.Y. Iosifov and A.L. Shestakov [26]. For such systems, a method of optimal tuning of
dynamic parameters by the criterion of the minimum variance of the measurement system
error [9] was obtained.

The next direction in the development of automatic control methods in measuring
systems is the study of sliding modes. It is known that such modes have a number of
attractive properties: high dynamic accuracy, invariance to perturbing influences and to
variations of dynamic properties of the object, reduced order of the system. M. Bizyaev
and A.L. Shestakov studied the models of sliding measuring systems with one measuring
coordinate of the primary measuring transducer and the measured vector of its state [3].
They proposed cascade structures of measuring systems in sliding mode, which ensure the
absence of auto oscillations.

A special place is occupied by the direction related to the application of the neural
network method for the realization of dynamic measurement systems on its basis.
A.S. Volosnikov and A.L. Shestakov considered various neural network models of the
primary measuring transducer and developed various algorithms for their training [45, 46].
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In addition, numerical methods for solving inverse problems, in which the measuring
system is simulated by a boundary value problem for differential equations [1, 47], have
been successfully applied.

The theory of optimal dynamic measurements emerged as a result of successful
interaction between two scientific schools headed by A.L. Shestakov and G.A. Sviridyuk.
It is based on the application of the methods of Sobolev-type equations theory and optimal
control to the solution of the problem of restoration of a dynamically distorted signal [27],
[32]. The mathematical model of a complex measurement system is based on a Leontief-
type system (a finite-dimensional analog of the Sobolev equation) [17], and the input signal
is found as a solution to the problem of optimal control of solutions of this system, which
determined the name of the problem solution – optimal dynamic measurement [36].

Since analytical and numerical methods for solving various optimal control problems
for Leontief-type systems have already been developed by A.V. Keller [12, 43], it led to
the formation of various approaches to mathematical modeling of the input signal recovery
problem, for example, taking into account resonant interference [28], degradation of the
measuring device [16]. At the same time, A.V. Keller, E.I. Nazarova, Y.V. Khudyakov,
and M.A. Sagadeeva began to develop numerical methods for solving various problems of
optimal dynamic measurement [15, 29, 37]. However, all these algorithms had a large
time complexity, which is not always acceptable for engineering practice, so a spline
method for solving the problem of optimal dynamic measurement [33] was developed and
its convergence was shown [14].

In order to solve the problem of optimal dynamic measurement in the presence of
random noise of the ≪white noise≫ type, the research began to be conducted in two
directions. The first direction uses the results of the theory of stochastic equations of
the Sobolev type developed by A. Favini, G.A. Sviridyuk, A.A. Zamyshlyayev. Favini,
G.A. Sviridyuk, A.A. Zamyshlyaeva, N.A. Manakova, S.A. Zagrebina, and M.A. Sagadeeva
[7, 8]. In these studies, ≪white noise≫ is understood in the sense of symmetric derivative
in the mean or Nelson – Glicklich derivative [10, 18]. This approach is used to solve the
simplest optimal dynamic measurement problem with ≪white noise≫ [49]. In the second
direction, white noise is understood in the classical sense, and it uses various numerical
methods for preprocessing the observed signal [13, 20, 37, 39, 40] and extracting a useful
output signal. Besides, A.V. Keller, A.A. Zamyshlyaeva and N.A. Manakova proposed
a new numerical method combining the spline method, the theory of samples statistical
methods [38]. In the first computational experiments it showed high efficiency.

Note that review articles were traditional for the scientific team conducting research
in the framework of the theory of optimal dynamic measurements. They summarized the
results of work of a long period, for example, [4]. This article is of a review nature. The
first section is devoted to the application of automatic control methods in the studies of
the inverse problem of dynamic measurements. The second section presents the results of
the theory of optimal dynamic measurements.

1. Methods of Automatic Control in Dynamic Measurements

Methods of increasing the accuracy of dynamic measurements based on the methods
of automatic control theory are presented in detail in A.L. Shestakov’s monograph [23].
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1.1. Method of Modal Control of Dynamic Characteristics of Measuring
Systems

The similarity of the structures of the automatic control system (Figure 1) and
the dynamic measurement system (Figure 2) became the starting point for applying
the methods of automatic control theory to correct the dynamic measurement error
[35]. In Fig. 1 u is an input signal of the system; x is a state vector of the system; y
is an observation vector; A,B,C,D are corresponding matrices. The required dynamic
properties are provided by setting the coefficients of the feedback matrix K.

Fig. 1. Structural diagram of the automatic control system

As already mentioned, the absence of a measurable input influence leads to the
impossibility of establishing feedback from the output to the input. Therefore, in dynamic
measurement systems, the reduction of dynamic measurement errors is realized by means
of a filter at the output of the primary measurement transducer (Figure 2).

Fig. 2. Structural diagram of the dynamic measuring system

Here u is an input measured vector of the system; xs, ys are state and observation
vectors; As, Bs, Cs, Ds are corresponding matrices of the sensing unit; xf , yf are vectors
of the state and observation of the filter; Af , Bf , Cf , Df are filter matrices of the
corresponding dimension; K is a matrix for setting the coefficients to provide the required
dynamic error.

A.L. Shestakov developed methods of dynamic error correction based on the similarity
of the structures of the sensing unit and filter. Figure 3 shows the structure of a dynamic
measurement system with modal control of dynamic characteristics.
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Fig. 3. Structural diagram of a dynamic measuring system with modal control of dynamic
characteristics

The transfer functions of the sensor WS and the sensor model WMS are identical, which
leads to their modeling by either one differential equation or one system of differential
equations. Let us formulate the basic idea of using the sensor model to correct the dynamic
measurement error: if the output signals yS and yMS are close to each other, then the input
signals U и UMS will also differ little from each other. Consequently, the input signal of
the UMS model allows the estimation of the sensor input signal U . In engineering practice,
there are tasks of indirect measurement of signals by integrating the output signal of
the primary measuring transducer. For example, it is necessary to obtain its velocity or
displacement from the acceleration data of an object. In this case, the structure of the
measurement system contains integrators of the output coordinate of the sensor, and the
signals at the outputs of the integrators will be part of the state coordinate vector of the
measuring transducer (Figure 4).

Fig. 4. Structural diagram of a measuring system with the observed state coordinate vector

For this case D.Y. Iosifov and A.L. Shestakov [9, 26] carry out a generalization of the
method of modal control of dynamic properties of measuring systems. At known spectral
densities of the measuring signal Su(ω) and noise Sν1

2
(ω), ...,Sνm

2
(ω) in the coordinate

channels of the observed state, the optimal individual characteristics of the correcting
device reducing the measurement error are obtained.

1.2. Iterative Dynamic Measurement Systems

The iterative principle of building automatic control systems allows designing systems
of high dynamic accuracy, however, they are not widely used in control systems due to the
difficulties of realization. In measurement systems, the iterative principle is realized more
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simply in the form of an additional data processing channel [25]. The structure diagram
of the iterative measuring device is presented in Figure 5.

Fig. 5. Structural diagram of a dynamic measuring system with iterative principle

The idea of dynamic error correction in such a system is as follows. The output signal
of the sensor y has some dynamic error of reproduction of the input signal of the sensor
u. At the output of the sensor there is its model, which reproduces the signal y, which
is dynamically distorted with respect to the measured signal u. By feeding the difference
of signals y−yM1 to the input of the second model, we reproduce this difference at the
output of this model. The sum of signals yM1+yM2=y2 reproduces the signal y with higher
accuracy. Consequently, the sum of their input signals uM1+uM1=u2 reproduces the signal
u with higher accuracy, since the transfer function of the model and the sensor are the
same. Then the difference of signals y−y2 is fed to the third model. The total output signal
of the first three models y3 more accurately reproduces the output signal of the sensor y.
Consequently, the total input signal of the three models uM1+uM2+uM3=u3 corresponds
more closely to the measured signal u.

As a result of the study of frequency properties of iterative dynamic systems, the
condition of error reduction at all frequencies and the limiting value of the damping
coefficient were obtained.

The study of iterative measurement systems in the presence of noise at the sensor
output showed that such systems insignificantly amplify the noise component of the
dynamic error and are effective if the spectrum of the useful signal is located mainly
in the frequency band.

1.3. Sliding Mode Method in Dynamic Measurement Systems

The introduction of the sensor model into the structural scheme of the measuring
system made it possible to apply there, using a nonlinear element and an amplifying link,
the theory of sliding modes, allowing potentially obtaining high dynamic accuracy and
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having a low sensitivity to perturbations [3]. The structural diagram of the sliding mode
measuring device is shown in Figure 6. In it, a relay with y − ym. as input signal is used

Fig. 6. Structural diagram of a dynamic measuring system in a sliding mode

as a nonlinear element for the occurrence of sliding mode. After the nonlinear element, a
gain factor K is introduced, which affects both the amplitude of the signal at the output
of the relay element and the switching frequency of the relay. As the gain K increases,
the switching frequency of the relay element also increases. Therefore K should be chosen
so that the spectrum of high-frequency oscillations lies outside the spectrum of the main
signal. It should be noted that high-frequency components distorting the measured signal
occur at the output of the relay element. Therefore, for qualitative restoration of the input
signal of the measuring transducer it is necessary to install a low-pass filter after the relay
element and gain K.

The presence of auto oscillations in the closed loop of the measurement system can
lead to sliding mode failure for a system with a sensor model above the second order.
Methods for eliminating auto oscillations have been proposed. The first of them was
the method providing model reduction by means of order reduction. M.N. Bizyaev and
A.L. Shestakov [3] showed that this method is effective only when the system order is
reduced by one or two orders. The method of structural transformations, which consists in
constructing a cascade structure of the measuring system, turned out to be more effective.
Each subsequent cascade more accurately reconstructs the measurement signal, and the
cascade partitioning solves the problem of auto oscillations and allows reducing the error
of dynamic measurements.

1.4. Neural Network Method in Dynamic Measurement Systems

First of all, we note that several neural network dynamic models of measuring devices
and algorithms for their training have been developed and implemented: with the purpose
of determining the system parameters, according to the criterion of minimum RMS error,
in the presence of noise at the sensor output, with an inverse sensor model in the form of
sequential sections of the first and second order, ensuring the stability of the measuring
system.

The sequential approach to synthesizing a neural network dynamic measuring system
consists in determining the parameters of the transfer function of the sensor model and
recovering discrete values of the input signal of the corrected model on the basis of
some number of sequentially connected identical neural network measuring systems of
the first order approximating the inverse transfer function of the aperiodic link. With
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an appropriate method of forming the input and target training sequences, reflecting the
relationship between the input and output of the discrete sensor model, the parameters of
the neural network model can be adjusted in the training process so that, at a given
level of accuracy, the samples of the output signal of the neural network model will
be equal to the corresponding discrete samples of the sensor output signal (Figure 7).

Fig. 7. Block diagram of the artificial neural network (ANN) direct sensor model

Therefore, minimization of the error function between the simulated and real output of
the measurement system is chosen as a criterion for training the neural network model.
The formation of the required type of the transfer function of the sensor model is based
on the transformation of the measured sensor output signal by means of a correction filter
and is a sequential connection of identical aperiodic links.

Based on the direct model and its training scheme, a neural network inverse dynamic
sensor model and its tuning scheme are developed. The inverse model should be able to
recover the dynamically distorted sensor input signal. However, when the neural network
inverse model is implemented, there will be a high-frequency noise component in the
recovered sensor input signal. To filter out the noise, an additional element corresponding
to a filter is introduced into the training scheme, which can be a moving average filter or a
recurrent filter. After training is completed, the neural network inverse model can function
in dynamic mode.
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As is known, dynamic error can be determined by two components: inertia of the
measuring transducer (manifested by changes in amplitude and phase of the signal)
and additive noise, which are superimposed on the output signal. Consequently, when
one component of dynamic error is corrected, the other component grows. Applying the
algorithm of dynamic error correction, the optimal filter parameters are selected to ensure
the minimum square of the error between the real and simulated observation. Numerous
computational experiments have shown high efficiency of neural network correction of
dynamic error of measurements.

1.5. Regularization Methods in Solving the Problem of Dynamically Distorted
Signal Recovery

The interdisciplinary ties developed at South Ural State University have led to the
emergence of works on the study of the solution of the inverse problem of dynamic
measurements as an inverse boundary value problem for an ordinary differential equation.

V.I. Zalyapin, Ye.V. Kharitonova, Yu.S. Popenko (Asfandiyarova) [1, 48] study the
following mathematical model of dynamic measurements.

{
L[x] = u(t),

Fj = αj , j = 1, 2, ..., n,
(1)

where L[x] = x(n)+pn−1x
(n−1)+∆∆∆+p1x

′+p0x, u(t) is the input signal, coefficients pi(t)
are continuous functions on [a, b], Fj(x) are linear, linearly independent functionals, αj are
constants. The problem of finding the solution f(t) of equation (1) with the experimentally
known output signal x(t) and given boundary conditions is called an inverse problem.

The linear boundary value problem (1) can be equivalently replaced [48] by some
problem with homogeneous boundary conditions (αj = 0 for j = 1, 2, ..., n), which we will
call semihomogeneous: {

L[x] = u(t),

Fj = 0, j = 1, 2, ..., n,
(2)

If F (x) is a linear functional in Cn−1
[a;b] , then the numbers ci and the function of bounded

variation σ(t) exist, and F (x) can be represented in the following form

F (x) =

n∑

i=1

cix
(i−1)(a) +

b∫

a

x(n−1)(t)dσ(t). (3)

The representation (3) is associated with the classical initial Cauchy problem. It is
easy to show that for functionals F (x) another representation associated with the simple
Vallee-Poussin problem can be obtained

F (x) =

n∑

i=1

cix(ti) +

b∫

a

x(n−1)(t)dσ(t). (4)

where ti are points from the interval [a, b], such that a ≤ t1 < t2 < ... < tn ≤ b.
The proposed methods for solving the investigated problems use the Green’s function

G(t, τ) and are based on the well-known relationship, which gives the solution of the
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semihomogeneous boundary value problem (2) in the integral form. The solution of the
inverse problem represents the considering an integral equation with unknown function u(t)
for a given function x(t). It is a Fredholm equation of the first kind and, as is well known,
the problem of solving such equation is unstable, so, this requires a special procedure of
regularization to ensure a satisfactory for applications accuracy of the obtained solution.

The works of D.D. Yaparov and A.L. Shestakov propose an algorithm for processing the
data obtained during dynamic measurements based on the finite-difference approach [47].
The restoration of the input signal is carried out using the transfer function of the sensor.
The transfer function of the sensor is presented in the form of a differential equation. This
equation describes the state of a dynamic system in real time. The proposed computational
scheme of the method is based on finite–difference analogs of partial derivatives and the
Tikhonov regularization method was used to construct a numerical model of the sensor.
The problem of stability of the method for solving high–order differential equations is also
one of the central problems of data processing in automatic control systems. Based on the
approach of the generalized quasi–optimal choice of the regularization parameter in the
Lavrent’ev method, the dependence of the regularization parameter, the parameters of the
dynamic measuring system, the noise index and the required level of accuracy was found.

2. Theory of Optimal Dynamic Measurements

2.1. Mathematical Model of the Measuring System as a Leontief-Type System

The mathematical model of the measuring system assumes the presence of several
measuring transducers in it. Differential equations in the system reflect a set of dynamic
elements of the system (transducers), and algebraic equations reflect connections between
dynamic elements. Theoretical aspects of building a mathematical model of a measuring
system are based on the ideas of the theory of descriptor systems [2]. As an example, let
us take a model with the iterative principle of restoring a dynamically distorted signal
(Figure 5). This model is represented by the system





û
M1 = u

M1,

ż1 = Â1z1 + B̂1ûM1,

ŷ
M1 = Ĉ1z1 + D̂1η̂1,

û
M2 = u

M1 − ŷ
M1,

ż2 = Â2z2 + B̂2ûM2,

ŷ
M2 = Ĉ2z2 + D̂2η̂2,

û
M3 = u

M1 − ŷ
M2,

ż3 = Â3z3 + B̂3ûM3,

ŷ
M3 = Ĉ3z3 + D̂3η̂3,

û
M4 = u

M1 − ŷ
M3,

...

żN = ÂNzN + B̂N ûMN ,

ŷ
MN = ĈNzN + D̂N η̂N ,

y
M
= û

M1 + û
M2 + û

M3 + ...+ û
MN + u

M1 − ŷ
M1 − ŷ

M2 − ŷ
M3 − ...− ŷ

MN .
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The view of this system reflects the idea of dynamic error correction with the iterative
principle, which consists in the sequential use of any number of measuring transducers,
the output of the system is the sum of the observed signal and the errors simlulated by
the iterative links (see Section 1.2).

Let us write down the mathematical model of the measuring device, which is presented
in Figure 5, as a matrix equation for the case of two measuring transducers




I 0 0 0 0 0 0
0 I 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0







ż1
ż2
˙̂u
M1

˙̂u
M2

˙̂y
M1
˙̂y
M2

ẏ
M




=

=




Â1 0 B̂1 0 0 0 0

0 Â2 0 B̂2 0 0 0

Ĉ1 0 0 0 −I 0 0

0 Ĉ2 0 0 0 −I 0
0 0 −I 0 0 0 0
0 0 0 −I −I 0 0
0 0 I I −I −I −I







z1
z2
û

M1

û
M2

ŷ
M1

ŷ
M2

y
M




+




0 0 0 0
0 0 0 0

0 0 D̂1 0

0 0 0 D̂2

I 0 0 0
I 0 0 0
I 0 D1 D2







u1

0
η̂1
η̂2


 .

Thus, the mathematical model of the measuring system is represented as a Leontief-
type system

Lẋ(t) = Mx(t) +Du(t), y(t) = Nx(t), (5)

where x = x(t) is a vector-function of the measuring system state, u = u(t) and y = y(t)
are vector-functions of input (measurement) and output (observation), L, M , D and N
are matrices characterizing the design of the measuring system [17].

Since signal distortion occurs not only due to the inertia of the measuring system, but
also, possibly, by other processes leading to the degradation of the measuring system, the
system was proposed as a model

Lẋ(t) = a(t)Mx(t) +Du(t), y(t) = b(t)Nx(t) + Fu(t), (6)

where a = a(t) and b = b(t) are vector-functions of device degradation [21].

2.2. Formulation of Optimal Dynamic Measurement Problems

The first mathematical model of the theory of optimal dynamic measurements was
proposed by A.L. Shestakov and G.A. Sviridyuk in [27].

Let us introduce the state spaces of the measuring device ℵ = {x ∈ L2 ((0, τ), R
n) :

ẋ ∈ L2 ((0, τ), R
n)} , observations Υ = C [ℵ] and measurements A = {u ∈ L2 ((0, τ), R

n) :
u(p+1) ∈ L2 ((0, τ), R

n)
}
. Modeling the dynamic measuring system in the absence of

intereference, we will consider {
Lẋ = Ax+Bu,

y = Cx
(7)

2023, vol. 10, no. 4 13



A. V. Keller, I. A. Kolesnikov

with the Showalter – Sidorov initial condition

[
(αL− A)−1 L

]p+1
(x(0)− x0) = 0 (8)

In A let us distinguish a closed convex set of admissible measurements A∂ ⊂ A of the type

A∂ =

{
u ∈ A :

θ∑

q=0

∫ τ

0

∥∥u(q)(t)
∥∥2 dt ≤ d

}
. (9)

Parameter d is defined based on the physical properties of the measured process. We need
to find such v ∈ A∂ – the optimal dynamic dimension – that achieves a minimum value of

J(v) = min
u∈A∂

J(u) (10)

the penalty function

J(u) =

1∑

q=0

∫ τ

0

∥∥∥y(q)(u, t)− y
(q)
0 (t)

∥∥∥
2

dt (11)

where y0(t), t ∈ [0, τ ] is a continuous-differentiable function (we will consider it as ≪real
observation≫), plotted on the basis of observed values Y0i at the output of the measuring
system. The considered problem (7) – (11)will be called the main problem of optimal
dynamic measurements. Note that in the absence of interference, the distortion of the
input signal is caused only by the inertia of the measuring device. The following is true

Theorem 1. [12]. Let L and A be square matrices of order n, matrix A be (L; p) regular,
detA 6= 0.Then for any x0 ∈ Rn there exists the only solution v ∈ A∂ of the problem (7) –
(11), where x (v) ∈ ℵ satisfies the system (7), condition (8) and is defined by the formula

x (t) = lim
k→∞

xk(t) = lim
k→∞

[
p∑

q=0

(
A−1

((
kLL

k (A)
)p+1 − In

)
L
)
×

×A−1
(
In −

(
kLL

k (A)
)p+1

)
(Bu)(q) +

((
L− t

k
A
)
−1

L
)k

x0+ (12)

+
t

∫
0

( (
L− t−s

k
A
)
−1

L
)k (

L− t−s
k
A
)
−1×

(
kLL

k (A)
)p+1

Bu (s) ds

]
,

where lim
k→∞

(
kLL

k (A)
)p+1

is a projector, LL (A) is a left resolvent of A.

For the model of the measuring device (6) approximate solutions are constructed as
follows

xk(t) =

t∫

0

X(t, s)L−1
1 Quk(s)ds+

p∑

q=0

HqM−1(Q− In)

(
1

a(t)

d

dt

)q
Duk(t)

a(t)
, (13)

yk(t) = b(t)Nxk(t) + Fuk(t). (14)

Another powerful impetus for the development of the theory of optimal dynamic
measurements was the development of the introduction of the concept of ≪white
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noise≫ as the Nelson – Glicklich derivative of the Wiener process [10, 18] for white noise
measurements [7, 8, 30, 31, 34].

Let Ω ≡ (Ω,A,P) is complete probability space. A random variable will be called a
measurable mapping ξ : Ω → R. Random variables with zero mathematical expectation
and finite variance form the Hilbert space L2 with scalar product (ξ1, ξ2) = Eξ1ξ2. The
fact that random variables ξ ∈ L2 have normal (Gaussian) distribution, we will denote by
ξ ∼ N(0, σ2), where Eξ = 0 and Dξ = σ2.

The mapping η : I ⊂ R× Ω → R will be called (one-dimensional) stochastic process.
The variable of the stochastic process η = η(t, ·) at each fixed t ∈ I is a random variable,
i.e. η(t, ·) ∈ L2, which will be called stochastic cross section, whereas the variable of
the stochastoc process η = η(·, ω) at each fixed ω ∈ Ω is called (selective) trajectory. A
continuous stochastic process whose (independent) cross sections are Gaussian is called a
Gaussian process.

The most important example of a continuous Gaussian stochastic process is the Wiener
process β = β(t), modeling Brownian motion on a straight line in Einstein – Smoluchowski
theory [6] presented by the formula

β(t) =
∞∑

k=0

ξk sin
π

2
(2k + 1)t, (15)

where ξk ∼ N(0, [π
2
(2k + 1)]−2)are independent normally distributed variables. Sections

of a stochastic process β are normally distributed random variables with Eβ(t) = 0 and
Dβ(t) = σ2t at some σ > 0. The stochastic process β presented by means of (15) will be
called one-dimensional Brownian motion.

Sections of a stochastic process
◦

β are distributed according to the normal law with

parameters (0, σ
2

4t
), i.e.

◦

β(t) ∼ N(0, σ2

4t
). That is why the Nelson – Glicklich derivative

◦

β of
the Brownian motion β from (15) will be called one-dimensional ≪white noise≫.

Let us consider the following stochastic model of the measuring system:




Lξ̇ = Aξ +B (u+ ϕ) ,
η = Cξ + v,[

(αL− A)−1L
]p+1

(x (0)− x0) = 0

(16)

Here, matrices L,A,B, C have the same meaning as in (5). Random processes ϕ and v
determine noise in circuits and at the output of the measuring device, respectively.

Consider the first equation of the system (16), which is a stochastic equation of Leontief
type:

L
◦

ξ= Aξ + B(u+ ϕ), (17)

where u : I −→ R
n is a vector function of the useful input signal, ϕ is a stochastic

process modeling noise, where the frequencies of the useful signal are different from the
noise frequencies. Let matrix A be (L, p)-regular, p ∈ {0} ∪ N, and initial states (17) are
described by the Schoulter-Sidorov initial condition:

[
(αL− A)−1L

]p+1
(ξ (0)− ξ0) = 0 (18)

where ξ0 =
∑n

k=0 ξ0,kek, ξ0,k are pairwise independent Gaussian random variables, and
{ek}nk=1 is an orthonormalized basis in Rn.
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Theorem 2. For any vector function u ∈ Cp+1 (I,Rn) , and initial values ξ0 and stochastic
process ϕ ∈ Cp+1

L2 (I,R
n), independent for any t ∈ I, there exists the unique solution ξof

the problem (5), (6), given by the formula

ξ (t) = ξu (t) + ξϕ (t) , ξu∈C1 (I,Rn) , ξu∈C1
L2 (I,R

n) (19)

where ξu is a deterministic, and ξϕ is a stochastic part of the solution

ξu (t) =

∫ t

0

U t−sL−1
1 Qu (s) ds+

p∑

q=0

(
M−1 (In −Q)L

)q
M−1(Q− In)u

(q)(t),

ξϕ (t) = U tξ0

∫ t

0

U t−sL−1
1 Qϕ (s) ds+

p∑

q=0

(
M−1 (In −Q)L

)q
M−1(Q− In)

◦

ϕ
(q)

(t).

(20)

Here U t = lim
r→∞

((
L− t

r
M
)
−1

L
)r

, Q = lim
r→∞

(
rLL

r (M)
)p

, LL
r (M) = L(L− 1

r
M)

−1
, and

In is a unit matrix of order n.

Dividing the problem into deterministic and stochastic ones, we show the existence of
a single solution of a stochastic Leontief-type system.

Similarly to the deterministic case in the study of the problem of restoration of
dynamically distorted signal by random noise in the circuits and at the output of MT,
consider the control problem (10), where the quality functional

J (u) = J (η (u)) =
1∑

k=0

∫ τ

0

E

∥∥∥∥
◦

η
(k)

(t)− η
(k)
0 (t)

∥∥∥∥
2

dt (21)

reflects the closeness of the real observation η0 (t) and virtual observation η(t),obtained on
the basis of the mathematical model of the measuring device.

The minimum point v (t) of the functional (21) on the set U∂ , which is the solution to
the optimal control problem (10), is optimal dynamic measurement. In practice there is
only indirect information about v (t).

Since the input signal is subject to noise in the circuits and at the output of the
measuring device, the virtual observation η(t) is a stochastic process, the real observation
η0 (t) at each point t ∈ I. Let us denote by η̃0 (t) a stochastic process η0 (t)− η0 (t) with
a zero mathematical expectation. Let us transform the quality functional:

J (u) =

1∑

k=0

∫ τ

0

E

∥∥∥∥
◦

η
(k)

(t)− η
(k)
0 (t)

∥∥∥∥
2

dt =

1∑

k=0

∫ τ

0

E

∥∥∥∥C
◦

ξ
(k)

(t) +
◦

v
(k)

− (η0
(k)(t) +

◦

η̃
(k)

0 (t))

∥∥∥∥
2

=

=

1∑

k=0

∫ τ

0

∥∥Cξ(k)u (t)− η0
(k)(t)

∥∥2dt +
1∑

k=0

∫ τ

0

E

∥∥∥∥C
◦

ξ
(k)

ϕ (t) +
◦

v
(k)
−

◦

η̃
(k)

0 (t)

∥∥∥∥
2

dt

Thus, noise and random initial conditions do not affect the optimal dynamic
measurement as the minimum point of the quality functional. They only affect the value
of the optimality criterion, namely increase the value.
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2.3. Spline Method for Solving the Problem of Optimal Dynamic Measurement
Taking Into Account the Inertia of the Measuring Device

Let us describe the spline method for solving the problem of optimal dynamic
measurement (7) – (11).

Suppose that the following components are given: the matrices included in system
(7); the initial value x0 ∈ Rn; the array of observed values Y0i at the nodal points ti =
0, 1, . . . , n of the output signal, and ti+1 − ti = δ, t0 = 0, tn = τ.

Divide the interval [0, τ ]into M intervals [τm−1, τm], where m = 1, 2, . . . ,M , and t0 =
τ0 = 0, tn = τM .

At each interval [τm−1, τm], construct the interpolation function yℓ0m(t) in the form of
a polynomial of the degree ℓ ≤ (n− 1) /M .

For m = 1, 2,. . . , M at [τm−1, τm] , consecutively solve the optimal dynamic
measurement problem (7)-(11) for u ∈ A∂m, where A∂m ⊂ A∂ is a closed convex subset
of A∂ , by the method described in [33]. We find the approximate value of the optimal
measurement vℓkm(t) in the form of a polynomial of the degree ℓ imposing the continuity
condition

vℓkm(τm) = vℓk,m+1(τm). (22)

As a result, we get a spline function ṽℓk(t) =
⋃

m vℓkm(t) continuous on [0, τ ].

2.4. Methods of Extracting Useful Output Signal

In the course of dynamic measurements in the presence of noise of various nature,
the output signal is noisy. The useful output signal is the output signal that is distorted
only by the inertia of the measuring device. Thus, the real observation is represented as a
sum of two components – useful output signal and noise component of the output signal.
For ≪filtering the observation≫ and selecting the useful output signal, it was proposed
to use the Savitsky–Golei digital filter [13], the moving average digital filter [40],the one-
dimensional Kalman filter [39] and the Pyt’ev–Chulichkov method [20]. After applying the
filters and obtaining an approximate useful output signal, we then proceed to implement
a spline method for solving the deterministic (7) – (11) dynamic measurement problem.

Suppose that the following components are given: matrices included in the system
(16), initial value x0 ∈ R

n, array of observed values Y0i in nodal points ti = 0, 1, . . . , n of
the output signal and ti+1− ti = δ, t0 = 0, tn = τ . In order to obtain a useful signal output
in [13] a digital Savitzky – Goley filter [22], which is a noise filtering method based on the
least squares method, is proposed. The idea is to construct a polynomial of the s degree,
approaching 2µ + 1 equidistant points and use the value of the polynomial in the µ + 1
th point as a value of useful output signal for this purpose it is necessary to determine
the parameters µ and s of the digital filter Savitsky – Golay and apply the filter to the
array of values Y0i. As a result, the values of useful output signal y0i, i = 0, 1, . . . , n will
be obtained. The peculiarities of selection of parameters of this filter are discussed in [13],
the results of computational experiments are given.

In [39] a discrete one-dimensional Kalman filter was proposed to extract the useful
output signal. We assume that Y0i and Yi are related as follows:

Y0i = Yi + ξi,
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where ξiÑ(0, σ2
ξ ) are normally distributed random variables. Using the Kalman filter, the

optimal estimate at time t is computed in two steps: prediction from the process model and
correction from the observational data. Let us denote by Ŷi the prediction of the output
at time ti from the estimate at time ti+1. For the first N +1 observations, we assume that
Yi = Y0i, i = 0, 1, . . . , N .

All subsequent considerations will be carried out for i = N + 1, N + 2, . . . , n. Let us
assume that we consider the output signal outside its physical model, in this case the
forecast Ŷi is given by the equation

Ŷi = Y i− 1. (23)

To obtain the best approximation to the desired value of Yi, a weighted average between
the observation Y0i and the prediction Ŷii at time ti is found, where the weights are the
values of Ki and 1−Ki,i where Ki is the Kalman coefficient.

To obtain the best approximation to the value sought, a weighted average is found
between the observation at the time, where the weights are the values of and

Yi = KiY0i + (1−Ki)Ŷi или Yi = Ŷi +Ki(Y0i − Ŷi).

The Kalman coefficient is calculated by the formula:

Ki =
P̂i

P̂i + σ2
ξ

,

where P̂i is the estimation of forecast error variance, P̂i = Pi−1 + wi, PN = const,

wi =
1

N − 1

N−1∑

m=0

(
(Y0,i−m − Yi−m−1)−

1

N

N−1∑

m=0

(Y0,i−m − Yi−m−1)

)2

.

The value of the parameter N is selected experimentally. For the next forecast, the estimate
of the forecast error variance should be recalculated by the formula

Pi = (1−Ki)P̂i.

As a result, we obtain the values of the useful observable signal. Now let us present the
results of adapting the Pyt’ev – Chulichkov method [19] to the solution of optimal dynamic
measurement problems [20, 21].

In general, we assume that an observation is an n-dimensional vector
{η1(t), η2(t), . . . , ηn(t)}, whose values are known at time instants {tj : j ∈ I}, I =
{0, 1, . . . , N}, i.e. ηi(tj) (i = 1, n, j = 0, N) are obtained. Additionally, a priori information
is known about the extremum and the nature of the convexity of the utility part of each of
the observed quantities ηi(t). In connection with this and the linearity of the model of the
measurement system, the assumption is made that for each component of the observation
there is a representation of the

ηi(t) = ỹi(t)+
◦

βi (t), i = 1, n.
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Here, ỹi(t) is the useful part corresponding to the i- observation coordinate, and
◦

βi (t)
is part contributing interference in the corresponding coordinate – ≪white noise≫, whose
cross sections have the distribution N(0, σ2

4t
).

To describe the statistical criterion for determining the useful part of an observation,
we introduce a class of Vk convex upward functions with a single maximum point tk on a
uniform grid {tj : j ∈ I}, I = {0, 1, . . . , N}.

Let us fix the observation coordinate i ∈ N : 1 ≤ i ≤ n. Let the useful component part
of the signal ỹi(t) have a maximum at a point k0 ∈ I _0 of a uniform grid, i.e. ỹi ∈ Vk0.
Let us estimate parameter k0 by the values {ηi(tj)}Nj=0 with a given probability γ

ηi(t) = ỹi(t)+
◦

βi (t), ỹi ∈ Vk0,
◦

βi (t) ∼ N(0, σ2

4t
).

Based on the results [5, 19] in order to estimate the parameter k0 ∈ I for i coordinated
of observation, the following statistics is applied

τk(i) =

N∑
j=0

(ηi(tj)
√
tj − Pk(η

i(tj)
√
tj))

2

N∑
j=0

(ηi − Pk(ηi(tj)
√
tj))2

,

where ηi = 1
N+1

N∑
j=0

ηi(tj)
√
tj, and Pk(η

i(t)
√
t) is a projection of ηi(t)

√
t onto the set Vk,

whose existence is shown in [5], and its construction is described in [20].The value of the
constructed statistics is used to find the value of the parameter k, at which the useful part
of the signal ηi(t)

√
t is closest in shape to Pk(η

i(t)
√
t).

The problem of constructing values of a single coordinate of observations on a uniform
grid {tj}Nj=0 is viewed as the problem of the best approximation of ỹi(t)

√
t by elements

of the set Vk, that is, finding a function Pk(η
i(t)

√
t) ∈ Vk, such that ‖Pk(η

i(t)
√
t) −

(ηi(t)
√
t)‖2 = inf

fi∈Vk

‖fi − ηi(t)
√
t‖2. An algorithm for constructing the utility values of a

single observation coordinate Pk(η
i(t)

√
t) is given in [21].

Applying to all coordinates the algorithm for constructing the useful part of one
coordinate of the observation distorted by white noise, under the additional assumption
of the singularity of its extremum point and upward convexity, we obtain the values of the
smoothed vector function of the observation ỹ(t).

2.5. Numerical Method for Restoration of Dynamically Distorted Signal Based
on the Sampling Theorem With Simple Averaging

As initial data, we know the elements of the system matrices and initial conditions
(16), the quality functional is defined as (16), an array of values Y0i of the observed signal
at time ti with interva δ, i = 1, 2, ..., N .

From the set of Y0i values, a subset is formed, the elements of which are selected
through an equal interval, which we will call the discretization interval of the algorithm ∆
in time. Note that then ∆ = K · δ, K ∈ Z. The choice of the discretization interval is an
important independent problem, which is described in detail in [38]. he choice of ∆ given
a known δ determines the value of K, which in turn determines the number K of basic
cycles of the algorithm. We denote the cycle number by the letter ℓ, so ℓ = 1, 2, ..., K.
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Basic calculations for each of the main cycles of finding an approximate dynamic
measurement of the input signal vℓ(t), ℓ = 1, 2, .., K are performed.

The initial calculation point tℓ0 and the state of the system are determined as xℓ
0: tℓ0:

t10 = 0, tℓ0 = t10 + (ℓ− 1)δ, ℓ = 2, .., K. xℓ
0: x1

0 = 0, xℓ
0 = C−1Y (t10 + (ℓ− 1)δ), ℓ = 2, .., K.

The points for the basic calculation are selected as T ℓ
k = tℓ0 + (k − 1)∆, k = 1, 2, ...R,

where R =
[
N
K

]
. These points are grouped into four (T ℓ

1 , T
ℓ
2 , T

ℓ
3 , T

ℓ
4 ), (T

ℓ
4 , T

ℓ
5 , T

ℓ
6 , T

ℓ
7) etc.

These groups will be called ≪arrays for T≫. Each array for T allows the formation of
array for Y : (Y ℓ

1 , Y
ℓ
2 , Y

ℓ
3 , Y

ℓ
4 ), (Y

ℓ
4 , Y

ℓ
5 , Y

ℓ
6 , Y

ℓ
7 ) etc. For each j array of ℓ main cycle at the

moment [T ℓ
3j+1, T

ℓ
3j+4], j = 0, ..., [(R− 1)/3]: 1) by means of Y ℓ

k interpolation determines
the observation function yℓj(t); 2) the optimal dynamic measurement problem is solved
using the constructed observation function.

The approximate measurement is sought in the form of a polynomial of a given degree,
therefore the main procedure is reduced to the search of such an array of its coefficients at
which at which the minimum of the functional is achieved. The algorithm implements for
this purpose multistep iterative method proposed in [12]. It utilizes the ideas of a multi-step
multi-coordinate descent with memory; when selecting a step, the results of the preceding
iteration are used with the verification of the constraint conditions for belonging to the
set of admissible measurements. The procedure of finding the minimum of the quality
functional is completed when the absolute value of the difference between the functional
values of the last and penultimate iteration of the cycle reaches a value smaller than
the specified error. The main stages of the algorithm for solving the problem of optimal
dynamic measurement are outlined in [38]. The peculiarity of the algorithm proposed
here is the condition of equality of the values of uℓ

j(t) at the boundary points of the sets
[uℓ

j(T3j+4) = uℓ
j+1(T3(j+1)+1)], j = 0, ..., [(R− 1)/3]. As a result, we obtain an approximate

optimal dynamic measurement vℓj(t) for each j-th set of ℓ-th main cycle on the time interval
[T ℓ

3j+1, T
ℓ
3j+4], j = 0, ..., [(R− 1)/3].

We calculate the values vℓi = vℓj(ti), ℓ = 1, 2, .., K, i = 1, 2, ..., N , j = 1, ..., [(R− 1)/3].
Using the obtained K of values vℓi , ℓ = 1, ..,K at each point ti, we calculate the average

values of vi at each point ti. The simulated optimal dynamic measurement v(t) is obtained
by the interpolation of average values vi. Computational experiments have shown the high
efficiency of this algorithm.

This article is written in connection with the 80th anniversary of South Ural State
University as a sign of the deepest respect for the leaders of the two scientific schools –
professors A.L. Shestakov and G.A. Sviridyuk, whose tireless scientific work has become
both an example for their students and an inspiration for their colleagues.
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МЕТОДЫ АВТОМАТИЧЕСКОГО И ОПТИМАЛЬНОГО

УПРАВЛЕНИЯ В ДИНАМИЧЕСКИХ ИЗМЕРЕНИЯХ

А.В. Келлер, И.А. Колесников

Статья представляет собой обзор результатов решения задач динамических изме-

рений двух научных школ, работающих в Южно–Уральском государственном универ-

ситете. Статья представляет собой обзор результатов решения задач динамических из-

мерений двух научных школ, работающих в Южно–Уральском государственном уни-

верситете. Динамические свойства измерительной системы являются критически важ-

ными факторами, влияющими на динамическиую погрешность измерений, при этом

структуры динамической измерительной системы и системы автоматического управ-

ления имеют общие принципы построения. Это позволило для исследовании динами-

ческих измерительных систем применить методы теории автоматического управления.

Однако, динамические измерительные системы отличает отсутствие обратной связи,

что потребовало при использовании идей теории автоматического управления разра-

ботки новых методов. К ним относится метод модального управления динамически-

ми характеристиками измерительных систем. Его развитие привело к разработке и

применению других методов: итерационного принципа измерительных систем, метода

скользящих режимов, параметрической адаптации систем, нейросетевые технологии,

численные методы решения обратных задач. Этим исследованиям в статье посвящен

первый раздел. Во втором разделе представлены результаты теории оптимальных ди-

намических измерений, в рамках которой задача восстановления динамически иска-

женного сигнала решается с использованием методов теории оптимального управле-

ния, а измерительное устройство моделируется системой леонтьевского типа. Сведение

решения обратной задачи динамических измерений к прямой математической задаче

позволило результативно применить существующий математический аппарат теории

уравнений соболевского типа в случае учета инерционности измерительной системы.

Для исследования задачи восстановления динамически искаженного сигнала при нали-

чии ≪шумов≫ были начаты аналитические, а затем и численные исследования, которые

привели к созданию теории стохастических уравнений соболевского и леонтьевского

типа и развитию численных методов. В обзоре особое внимание уделено численным

методам, построенных на идее выделения полезного выходного сигнала по известному

зашумленному наблюдению с последующим применением численного метода восста-

новления входного сигнала. Кроме того кратко представлен алгоритм нового числен-

ного метода, основанным на использовании теоремы отсчетов и простого усреднения.

Библиографический обзор составлен на основе излагаемых результатов и, безусловно,

не является исчерпывающим.

Ключевые слова: динамические измерения; автоматическое управление; опит-

мальное управление; системы леонтьевского типа; оптимальное динамичeское из-

мерение.
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