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PROCESSING WITH PARAMETER ESTIMATION BASED
ON DATA INSIDE BATCHES

A. V. Kolnogorov, Yaroslav-the-Wise Novgorod State University, Veliky Novgorod,
Russian Federation, kolnogorov53@mail.ru

We consider optimization of two-alternative batch data processing within the

framework of the Gaussian one-armed bandit problem. This means that there are two

alternative processing methods with different efficiencies and the effectiveness of the second

method is a priori unknown. It is necessary to determine which method is more effective

and ensure its preferential use, so that the effectiveness of the second method is evaluated

during the data processing inside batches. This approach is advisable to use if the volumes of

batches and their number are not very large. Recursive equations for calculating Bayesian

risk and regret in the usual and invariant form with a control horizon equal to one are

obtained.
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Introduction

We consider optimization of batch data processing if two alternative methods with
different efficiencies are available for processing when the effectiveness of the first method
is known a priori, and the second is not. During processing, it is necessary to determine
a more effective method and ensure its preferential use. In the mathematical formulation,
this optimization problem is known as the two-armed bandit problem (see, e.g., [1, 2])
with known characteristics of the first method, or the one-armed bandit problem. In what
follows, processing methods are called actions. The problem has applications in behavior
modeling [3], adaptive control of random processes [4], medicine, Internet technologies,
data processing, etc. [5].

Formally, the Gaussian one-armed bandit is a controlled random process ξn,
n = 1, 2, . . . , N , which values are interpreted as incomes, depend only on the currently
selected actions yn (yn ∈ {1, 2}) and, if the second action is chosen, have a normal
(Gaussian) distribution density

fD(x|m) = (2πD)−1/2 exp(−(x−m)2/(2D)).

Here m, D are the mathematical expectation and variance of one-step income for choosing
the second action. The mathematical expectation of income for the choice of the first
action m1 is known and, without loss of generality, is zero (otherwise, one can consider the
process ξn−m1, n = 1, 2, . . . , N). Thus, a one-armed bandit is described by the parameter
θ = (m,D). The parameter value is assumed to be a priori unknown, however, a set of
parameters is known Θ = {(m,D) : |m| ≤ C < +∞, 0 < D ≤ D ≤ D < +∞}. Note
that the Gaussian distribution of income is a consequence of batch processing, in which
the same actions are applied to data batches, and then the total incomes in the batches
are used for control.
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The control strategy σ at time n+1 performs, in general, a stochastic choice of action
yn+1 depending on the current value of sufficient statistics, which in this case are the total
income for choosing the second action and the corresponding s2- statistics. A regret

LN(σ, θ) = N max(0, m)− Eσ,θ

(

N
∑

n=1

ξn

)

(1)

characterizes the mathematical expectation of the loss of cumulative income relative to its
maximum possible value in the presence of complete information. Here Eσ,θ is a sign of
mathematical expectation if σ and θ are fixed. Note that the regret for the processes {ξn}
and {ξn −m1} are the same.

Consider a prior distribution density of λ(θ) on the set of parameters Θ. By

LN (σ, λ) =

∫

Θ

LN (σ, θ)dθ, (2)

RB
N(λ) = inf

{σ}
LN(σ, λ) (3)

we denote the regret averaged with respect to λ and Bayesian risk. Here dθ = dmdD. The
minimax risk on the set Θ is defined as

RM
N (Θ) = inf

{σ}
sup
Θ
LN (σ, θ). (4)

Bayesian strategy and risk can be found by solving backwards the Bellman recursive
equation. There is no direct method for finding minimax strategies and risks, but they
can be searched using the main theorem of game theory, according to which minimax
strategy and risk coincide with Bayesian ones calculated with respect to the worst-case
prior distribution on which Bayesian risk is maximal [6]. In the case of large N (big data),
an asymptotic estimate of the order of N1/2 is well-known for minimax risk [7]. Another
important property of the minimax approach in the case of big data is that batch processing
virtually does not lead to an increase in maximum regret if the number of batches, into
which the data is divided, is large enough [6, 8].

The one-armed bandit problem was previously considered in [9, 10] for a Bernoulli one-
armed bandit whose incomes have values 0 and 1; asymptotic properties were studied in
[10]. In [9], the following intuitively clear property of the Bayesian strategy is proved: the
choice of the second action (with unknown characteristics) can start only at the beginning
of the control. If the first action is selected once, it will be applied until the end of the
control. This is due to the fact that the applying the first action does not provide additional
information, so if once a conclusion was made that it is better than the second, this decision
will not be changed as a result of applying the first action. This property is also valid for
the Gaussian one-armed bandit, including the one considered in section ??. The proof is
similar to the one given earlier in [6, 11, 12] and is therefore omitted.

Let’s point out the difference between the statements considered in this article and
those presented in [6, 11, 12]. In [6, 11], a Gaussian one-armed bandit was considered,
whose incomes were characterized by one unknown parameter, mathematical expectation.
This model corresponds to a situation where the batch sizes are large, so the variance can
be estimated when processing the first batch, and then this estimate is used for control. In
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the case of batches of moderate volume, the variance should be evaluated during the control
process. Unlike [12], where the variance is estimated by the total incomes of batches, in
this article the estimation is based on the data inside the batches.

The further structure of the article is as follows. In section 1, recursive equations
are obtained for calculating Bayesian risk and regrets in the usual and invariant forms.
The advantage of the invariant form is that it does not depend on the total number of
data, but only on the number of processed batches and the data inside the batch for
which the variance is estimated. Therefore, the invariant form can be used to obtain
asymptotic estimates of Bayesian and minimax risk. Section 2 contains the results of
numerical experiments. The conclusion is presented in section 3.

1. Recursive Equations for Computing Bayesian Risk and a Regret

Consider batch data processing, in which the variance estimation is performed during
data processing within the batch. To do this, we assume that the processing is carried
out in batches of the size M = M1M2. In turn, these batches are divided into M2 small
packets, each of which includes M1 of data. This makes it possible to estimate the variance
when processing the next large batch based on the observed incomes of small packets by
computing the corresponding s2-statistics. It is clear that small packets and also large
batches themselves allow parallel processing. The number of large batches and, accordingly,
the number of processing stages is K. Thus, the total number of data is N = KM1M2 =
KM .

Let’s consider how to recalculate the total incomeX and s2-statistics S after processing
the next large batch. Recall mentioned above property of Bayesian strategy that it can
start to apply the second action only at the beginning of control. Let k be the current
number of large batches processed and, therefore, n = kM2 be the current total number
of small packets included in them. Denote by xi, i = 1, 2, . . . , n incomes obtained when
processing n small packets by the second action. Then the current total income and s2-
statistics are X =

∑n
i=1 xi, S =

∑n
i=1 x

2
i − X2/n. For the next (k + 1)th large batch

(k ≥ 0), one can compute its total income and s2-statistics on the small packets included
in it with incomes xn+1, . . . , xn+M2

as follows: Y =
∑n+M2

i=n+1 xi, U =
∑n+M2

i=n+1 x
2
i − Y

2/M2.
Then the new values of total income and s2-statistics are recalculated using the old ones

according to the following formulas Xnew =
∑n+M2

i=1 xi = X + Y , Snew =
(

∑n+M2

i=1 x2i

)

−

(X + Y )2/(n +M2) = S + U +M1∆(X, k, Y ), where M1∆(X, k, Y ) = Y 2/M2 +X2/n −
(X + Y )2/(n +M2) = (M2X − nY )2/ (nM2(n+M2)). If k = 0 then X = S = 0 and,
therefore, ∆(0, 0, 0). Thus, the recalculation of statistics after the receipt of the next large
data batch is carried out according to the formulas

X ← X + Y, S ← S + U +M1∆(X, k, Y ), (5)

where ∆(0, 0, 0) = 0 and

∆(X, k, Y ) =
(M2X − kM2Y )2

M1M
3
2 k(k + 1)

=
(X − kY )2

Mk(k + 1)
, ifk ≥ 1. (6)

Consider a chi-squared distribution density with k degrees of freedom χ2
k(x) =

{2k/2Γ (k/2)}−1x
k

2
−1e−

x

2 , x ≥ 0, k ≥ 1. Denote by D′ = M1D and m′ = M1m the
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variance and the mathematical expectation of income for processing the small packet.
Given the prior distribution λ(θ), let’s determine the posterior distribution. We introduce
the function F(X,S, k|m′, D′) by the following conditions: F(0, 0, 0|m′, D′) = 1 and
F(X,S, k|m′, D′) = fkM2D′ (X|kM2m

′)ψkM2−1 (S/D
′) if k ≥ 1 with ψkM2−1 (S/D

′) =
(D′)−1χ2

kM2−1(S/D
′). Note that if k ≥ 1, the functions fkM2D′ (X|kM2m

′) and
ψkM2−1 (S/D

′) describe the probability density functions (pdf) of cumulative incomeX and
s2-statistics S computed after processing k large batches or, equivalently, after processing
kM2 small packets. Since X and S are independent random variables, the joint pdf

F(X,S|m′, D′) = fM2D′(X|M2m
′)ψM2−1 (S/D

′) (7)

describes the pdf of X, S, corresponding to processing one large batch.
Given a prior distribution density λ(m,D), the posterior distribution density

is λ(m,D|X,S, k) = F(X,S, k|m′, D′)λ(m.D)/P (X,S, k), where P (X,S, k) =
∫∫

Θ
F(X,S, k|m′, D′)λ(m.D)dmdD, k = 0, 1, 2, . . . and λ(m,D|0, 0, 0) = λ(m,D).

However, recursive equation is simpler if the posterior distribution is defined in an
equivalent way. Denote F̃(0, 0, 0|m′, D′) = 1 and

F̃(X,S, k|m′, D′) = (D′)−3/2f̃kM2D′(X|kM2m
′)ψ̃M2k−1 (S/D

′) , (8)

if k ≥ 1, where

f̃D(x|m) = exp
(

−(x−m′)2/(2D)
)

, ψ̃kM2−1(s) = s
kM2−1

2
−1e−s/2, (9)

Then, given a prior distribution density λ(m,D), the posterior distribution density is

λ(m,D|X,S, k) = F̃(X,S, k|m′, D′)λ(m,D)/P̃ (X,S, k),

with P̃ (X,S, k) =

∫∫

Θ

F̃(X,S, k|m′, D′)λ(m,D)dmdD.
(10)

Note that (10) remains valid if k = 0, too.
Denote by RB(X,S, k) = RB

M(K−k)(λ(m,D|X,S, k) the Bayesian risk computed on the

control horizon K − k with respect to a prior distribution density λ(m,D|X,S, k). Recall
the property of the strategy: once the first action is chosen, it will be used until the end
of the control. Taking into account (5)–(6), the standard dynamic programming equation
has the form

RB(X,S, k) = min
(

RB
1 (X,S, k), R

B
2 (X,S, k)

)

, (11)

where RB
1 (X,S, k) = RB

2 (X,S, k) = 0 if k = K and

RB
1 (X,S, k) = (K − k)

∫∫

Θ

M2(m
′)+λ(m,D|X,S, k),

RB
2 (X,S, k) =

∫∫

Θ

λ(m,D|X,S, k)×
(

M2(m
′)− (12)

+

∫ ∞

0

∫ ∞

−∞

RB(X + Y, S + U +M1∆(X, k, Y ), k + 1)F(Y, U |m′, D′)dY dU
)

dmdD
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if 0 ≤ k < K. Bayesian risk (3) is

RN (λ) = R(0, 0, 0). (13)

Here RB
2 (X,S, k) characterizes the expected loss on the control horizon K − k if the

second action is applied first and then the control is carried out optimally. When processing
(k+1)th the large batch, the Bayesian strategy prescribes choosing an action corresponding
to the current smaller value RB

1 (X,S, k), R
B
2 (X,S, k); in the case of a draw, the choice can

be arbitrary. Once the first action is chosen, it will be used until the end of the control.
Let’s present equation (11)–(12) in a more convenient for computations form. We put

Rℓ(X,S, k) = RB
ℓ (X,S, k)× P̃ (X,S, k), ℓ = 1, 2. The following theorem is valid.

Theorem 1. To determine the Bayesian risk, one should solve a recursive equation

R(X,S, k) = min (R1(X,S, k), R2(X,S, k)) , (14)

where R1(X,S, k) = R2(X,S, k) = 0 if k = K and

R1(X,S, k) = (K − k)MG1(X,S, k),

R2(X,S, k) =MG2(X,S, k) (15)

+

∫ ∞

0

∫ ∞

−∞

R(X + Y, S + U +M1∆(X, k, Y ), k + 1)H(X,S, k, Y, U)dY dU,

if 0 ≤ k < K. Here

G1(X,S, k) =

∫∫

Θ

m+
F̃(X,S, k|m′, D′)λ(m,D)dmdD,

G2(X,S, k) =

∫∫

Θ

m−
F̃(X,S, k|m′, D′)λ(m,D)dmdD.

(16)

Function H(X,S, k, Y, U is as follows: H(0, 0, 0, Y, U) = C(M2) and

H(X,S, k, Y, U) = C(M2)×
S(kM2−1)/2−1U (M2−1)/2−1

(S + U +M1∆(X, k, Y ))((k+1)M2−1)/2−1
, (17)

if k ≥ 1 with C(M2) = (2M2M2π)
−1/2/Γ((M2 − 1)/2). Bayesian risk (3) is

RN (λ) = R(0, 0, 0). (18)

When processing the (k + 1)th large batch, the Bayesian strategy prescribes to choose an
action corresponding to the currently smaller value R1(X,S, k), R2(X,S, k); in the case
of a draw, the choice can be arbitrary. Once the first action is chosen, it will be used until
the end of the control.

Proof. Let’s multiply the left-hand and right-hand sides of the equation (11)–(12) by
P̃ (X,S, k) in (10). We get (14)–(15), where G1(X,S, k), G2(X,S, k) are described by (16),
and

H(X,S, k, Y, U) =
F̃(X,S, k|m′, D′)F(Y, U |m′, D′)

F̃(X + Y, S + U +M1∆, k + 1|m′, D′)
. (19)
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with ∆ given by (6). For k ≥ 1, using (7)–(9), it follows from (19) that

H(X,S, k, Y, U) =
f̃kM2D′(X|kM2m

′)fM2D′(Y |M2m
′)

f̃(k+1)M2D′(X + Y |(k + 1)M2m′)

ψ̃kM2−1(S/D
′)ψM2−1(U/D

′)

ψ̃(k+1)M2−1((S + U +M1∆)/D′)
.

Here

f̃kM2D′(X|kM2m
′)fM2D′(Y |M2m

′)

f̃(k+1)M2D′(X + Y |(k + 1)M2m′)
=

(

1

2πM2D′

)1/2

exp

(

−
M1∆

2D′

)

and

ψ̃kM2−1(S/D
′)ψM2−1(U/D

′)

ψ̃(k+1)M2−1((S + U +M1∆)/D′)
=

1

D′ × 2(M2−1)/2Γ((M2 − 1)/2)

×
(S/D′)(kM2−1)/2−1(U/D′)(M2−1)/2−1

((S + U +M1∆)/D′)((k+1)M2−1)/2−1
×

exp (−S/(2D′)) exp (−U/(2D′))

exp (−(S + U +M1∆)/(2D′))

=
(D′)1/2 exp (M1∆/(2D

′))

2(M2−1)/2Γ((M2 − 1)/2)
×

S(kM2−1)/2−1U (M2−1)/2−1

(S + U +M1∆)((k+1)M2−1)/2−1
.

Hence, H(X,S, k, Y, U) satisfies (17) if k ≥ 1. If k = 0 then X = 0, S = 0 and (19) takes
the form

H(0, 0, 0, Y, U) =
fM2D′(Y |M2m

′)ψM2−1(U/D
′)

(D′)−3/2f̃M2D′(Y |M2m′)ψ̃M2−1(U/D′)
= C(M2).

Formula (18) follows from (13) and equality P̃ (0, 0, 0) = 1.

2

Let’s obtain an invariant form of formulas (14)–(18). We take the set of parameters
ΘN = {(m,D) : D ≤ D ≤ D, |m| ≤ c(D/N)1/2}, where c > 0, 0 < D ≤ D ≤ D < ∞.
If one puts D = βD, m = α(D/N)1/2 = α(β−1D/N)1/2, then the set of parameters takes
the form ΘN = {(α, β) : D/D = β0 ≤ β ≤ 1, |α| ≤ cβ1/2}.

Consider the change of variables: X = x(DN)1/2, Y = y(DN)1/2, S = sDM1,
U = uDM1, k = tK, M/N = K−1 = ε, m = α(D/N)1/2, D = βD, λ(m,D) =
(N/D 3)1/2̺(α, β). Let

Rℓ(0, 0, 0) = (DN)1/2rℓ(0, 0, 0), Rℓ(X,S, k) = (DN)1/2(DM1)
−3/2rℓ(x, s, t), (20)

if k ≥ 1, ℓ = 1, 2. Then the following theorem is valid.

Theorem 2. To determine a Bayesian risk, one should solve a recursive equation

r(x, s, t) = min (r1(x, s, t), r2(x, s, t)) , (21)

where r1(x, s, t) = r2(x, s, t) = 0 if t = 1 and

r1(x, s, t) = (1− t)g1(x, s, t),

r2(x, s, t) = εg2(x, s, t) (22)

+

∫ ∞

0

∫ ∞

−∞

r(x+ y, s+ u+ δ(x, t, y), t+ ε)h(x, s, t, y, u)dydu,
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if 0 ≤ t ≤ 1− ε. Here

g1(x, s, t) =

∫∫

ΘN

α+
f̃(x, s, t|α, β)̺(α, β)dαdβ, (23)

g2(x, s, t) =

∫∫

ΘN

α−
f̃(x, s, t|α, β)̺(α, β)dαdβ,

with f̃(0, 0, 0|α, β) = 1 and f̃(x, s, t|α, β) = β−3/2f̃tβ(x|tα)ψ̃kM2−1(s/β) if t > 0. Function
h(x, s, t, y, u) is as follows: h(0, 0, 0, y, u) = c(M2) and

h(x, s, t, y, u) = c(M2)×
s(kM2−1)/2−1u(M2−1)/2−1

(s+ u+ δ(x, t, y))((k+1)M2−1)/2−1
, (24)

if t ≥ ε with c(M2) = (2M2πε)−1/2/Γ((M2 − 1)/2). Function δ(x, t, y) is the following:
δ(0, 0, 0) = 0 and

δ(x, t, y) = (εx− ty)2/(εt(t+ ε)) (25)

if t ≥ ε. When processing the (k+ 1)th large batch (respective to (t+ ε) point of time) the
Bayesian strategy prescribes choosing an action corresponding to a smaller value r1(x, s, t),
r2(x, s, t); in the case of a draw, the choice can be arbitrary. Bayesian risk (3) is

RN (λ) = (DN)1/2r(0, 0, 0). (26)

This description of control on the unit horizon is invariant in the sense that it does not
depend on the total amount of data N but only on the number of large batches K and the
number of small packets M2 as parts of large ones.

Proof. One should perform the above change of variables in (14)–(18) and use (20).

2

Let’s present a recursive equation for computing the regret (2). We restrict
considerations to strategies which can use the second action only at the beginning of
control. Once choosing the first action, they apply it until the end of control. Such strategy
σ is described by a set of probabilities σℓ(X,S, k) = Pr(yk+1 = ℓ|X,S, k), ℓ = 1, 2;
k = 0, . . . , K − 1. Similarly to theorem 1 the following theorem holds true.

Theorem 3. Consider a recursive equation

L(X,S, k) =

2
∑

ℓ=1

σℓ(X,S, k)Lℓ(X,S, k), (27)

where L1(X,S, k) = L2(X,S, k) = 0 if k = K and

L1(X,S, k) = (K − k)MG1(X,S, k),

L2(X,S, k) =MG2(X,S, k) (28)

+

∫ ∞

0

∫ ∞

−∞

L(X + Y, S + U +M1∆(X, k, Y ), k + 1)H(X,S, k, Y, U)dY dU,
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if 0 ≤ k ≤ K − 1. Here G1(X,S, k), G2(X,S, k) are given by (16), H(X,S, k, Y, U) is
given by (17) and ∆(X, k, Y ) is given by (6). Then a regret (2) is

LN (σ, θ) = L(0, 0, 0). (29)

To determine a regret (1), one should choose a degenerate probability density concentrated
at a single parameter θ.

For an invariant representation of the equation for computing the regret, we make
an additional replacement σℓ(X,S, k) = σℓ(x, s, t), Lℓ(0, 0, 0) = (DN)1/2lℓ(0, 0, 0),
Lℓ(X,S, k) = (DN)1/2(DM1)

−3/2lℓ(x, s, t) if k ≥ 1, ℓ = 1, 2.

Theorem 4. To determine a regret, one should solve a recursive equation

l(x, s, t) =
2
∑

ℓ=1

σℓ(x, s, t)lℓ(x, s, t), (30)

where l1(x, s, t) = l2(x, s, t) = 0 if t = 1 and

l1(x, s, t) = (1− t)g1(x, s, t),

l2(x, s, t) = εg2(x, s, t) (31)

+

∫ ∞

0

∫ ∞

−∞

l(x+ y, s+ u+ δ(x, t, y), t+ ε)h(x, s, t, y, u)dydu,

if 0 ≤ t ≤ 1 − ε. Here g1(x, s, t), g2(x, s, t), are given by (23), h(x, s, t, y, u) and δ(x, t, y)
are given by (24), (25). A regret (2) is

LN (σ, θ) = (DN)1/2l(0, 0, 0). (32)

This description of control on the unit horizon is invariant in the sense that it does not
depend on the total amount of data N but only on the number of large batches K and the
number of small packets M2.

2. Numerical Results

Let’s describe the results of numerical experiments. In Fig. 1, we present approximate
finding minimax strategy and minimax risk. In considered case, K = 12, M2 = 5, M1 =
1 and, therefore, the total number of data is N = 60. The set of parameters is Θ =
{(m,D) : 0.7 = D ≤ D ≤ 1 = D, m = α(D/N)1/2, |α| ≤ 5}. The results are presented
for a Bayesian strategy computed with respect to a prior distribution Pr(D = 1, α =
3.5) = 0.16, Pr(D = 1, α = −5) = 0.84, corresponding normalized Bayesian risk is
approximately 0.47. For determined strategy, the regrets corresponding to variance values
of D = 1, 0.9, 0.8, 0.7, are presented by lines 1, 2, 3, 4 respectively, their maximum is
approximately 0.48. Calculations of Bayesian risk were performed using (14)–(18), the
regrets were computed using (27)–(29). When performing numerical integration, X varied
in the range from -18 to 18 in increments of 0.15, and S varied from 0.5 to 120.5 in
increments of 1. Since, a function H(X,S, k, Y, U) has no singularity if M2 = 5, there is
no need to provide a small increment in S.
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Fig. 1. Graph of the numerical solution of smth.

3. Conclusion

We have considered batch data processing with an estimation of the parameters of
the distribution of one-step income by incomes within batches. This approach is applicable
if the number of batches being processed and their sizes have moderate volumes. The
resulting invariant control descriptions depend only on the number of batches being
processed and not on the total number of data.

The research was supported by Russian Science Foundation, project number 23-21-
00447, https://rscf.ru/en/project/23-21-00447/.
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ОПТИМИЗАЦИЯ ДВУХАЛЬТЕРНАТИВНОЙ ПАКЕТНОЙ
ОБРАБОТКИ С ОЦЕНКОЙ ПАРАМЕТРОВ НА ОСНОВЕ
ДАННЫХ ВНУТРИ ПАКЕТОВ

А.В. Колногоров

Рассматривается оптимизация двухальтернативной пакетной обработки данных

в рамках задачи о гауссовском одноруком бандите. Это означает, что для обработки

имеются два альтернативных метода с различными эффективностями, причем эффек-

тивность второго метода априори неизвестна. Требуется определить, какой метод яв-

ляется более эффективным, и обеспечить его преимущественное применение, причем

оценка эффективности второго метода осуществляется в процессе обработки данных

внутри пакетов. Данный подход целесообразно использовать если объемы пакетов и

их количество не очень велики. Получены рекуррентные уравнения для вычисления

байесовского риска и функции потерь в обычной и инвариантной форме с горизонтом

управления равным единице.

Ключевые слова: гауссовский однорукий бандит; пакетная обработка; байесов-

ский и минимаксный подходы; инвариантное описание.
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