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We apply the method of guiding potentials to obtain an existence of periodic solution
theorem to a differential equation with continuous periodic right-hand side on a Lie group,
i.e., the solution of the Cauchy problem for this equation is not unique. To avoid this
difficulty we elaborate the machinery of integral operators with parallel translation such
that for a T-periodic ordinary differential equation (i.e., a vector field) on a Lie group
with continuous right-hand side the fixed points of those operators are T-periodic solutions.
It is shown that under some natural conditions the second iteration of such operator is
completely continuous. The method of guiding potentials with those operators allows us to
obtain the existence theorem we are looking for. The paper contains a short survey of the
theory of integral operators with parallel translation and a modification of the construction
of topological index applicable on the manifolds.
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Introduction

We apply the method of guiding potentials to obtain an existence of periodic solution
theorem to a differential equation with continuous periodic right-hand side on a Lie group.
For such equations the solution of the Cauchy problem is not unique. In [1] we considered
analogous problem on a non-compact manifold in the case where the right-hand side was
C" smooth so that the solution of the Cauchy problem was unique and it was possible to
use the operator of translation along the trajectories. In order to avoid the difficulty with
non-uniqueness of the solution of the Cauchy problem, we have elaborated the machinery of
integral operators with parallel translation whose second iteration is completely continuous
and whose fixed points are the periodical solutions. The method of guiding potentials with
those integral operators allows us to obtain the existence theorem we are looking for.

The paper contains a short survey of the theory of integral operators with parallel
translation and a modification of the construction of topological index applicable on the
manifolds.

1. Integral Operators with Parallel Translation

Everywhere below we deal with all objects given on a finite interval [0, 7], 7 > 0.

Let M be a complete Riemannian manifold, my € M and v: [0,T] — T,,,,M be a
continuous curve in the tangent space 7,,,M. Everywhere below we deal with the Levi-
Civita connection on M.
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Theorem 1. There exists a unique C'-curve m: [0,T] — M such that m(0) = mq and
the tangent vector m/(t) is parallel along this curve to the vector v(t) € T,,,,M for every
te[0,7].

The existence of the curve m(t) from Theorem 1 follows from some classical
constructions. Let m(t) be a C'-smooth curve in M, ¢t € [0,T], m(0) = mg. Denote

by I' the operator of parallel translation of vector fields along m(-) to T,,, M. Recall that
t

the curve C(mf(t)) = /Fm’(s)ds is known as Cartan’s development of m(t) at T,,, M. Note

0
the well-known fact that Cartan’s development is convertible and it is obvious that the
t

curve m(t) from Theorem 1 is expressed via Cartan’s development as C™' / v(s)ds

0
We denote the operator that sends v(t) to m(t) in Theorem 1 by the symbol S. It is
easy to show that S is continuous.
Since the parallel translation preserves the norm of the vector, the following statement
is valid.

Theorem 2. Let Ui be the ball of the radius K centered at the origin of the space
of continuous curves C°([0,T],T,,,M). Then, at every point t € [0,T], the inequality
|m(t)|| < K holds for all curves m(-) from the set SUy.

Lemma 1. (Compactness lemma) Let = < C°[0,T),TM) be such that 7= C
CH[0,T], M), where m: TM — M is the natural projection. If = is relatively compact
in C°([0, T, TM), then so is T'=.

The proof of Lemma 1 can be found, e.g., in [2, Lemma 3.51].

Let Qx be the set of curves from C*([0,T], M) satisfying the inequality ||m/(t)|| < K,
where K > 0 is a real number, at every point ¢ € [0,7] and such that the set {m(0) |
m(-) € Qg } is relatively compact in M.

Theorem 3. The set of curves T'(Qg) is relatively compact in CO([0,T], TM).

Proof. Since Qy is compact in C°([0,T], M) and the field X (¢,m) is continuous, the
set of curves { X (t,m(t)) | m(-) € Qk } is compact in C°([0, 7], TM). Then the agssertion
follows from Lemma 1.

O

Let a continuous vector field X (¢, m) be given on M. Consider the set C}}, ([0, 7], M) C
C([0,T], M) consisting of curves with initial value m(0) = mg. Introduce the composition
operator

S oTX(t,m(t)): €L, (0, T], M) — CL, ([0, ], M),
One can easily see that this operator is continuous since the parallel translation

continuously depends on the curves, along which it is carried out.

Theorem 4. The fized point of Sol is precisely the solution of equation m/(t) = X (t, m(t))
with the initial condition m(0) = my.
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Indeed, if m(t) is a fixed point, m/(t) is parallel along m(t) to ['X (¢, m(t)). But by
construction I'X (¢, m(t)) is parallel to X (¢, m(t)). Hence m/(t) = X (¢, m(t)).

Now let M be a Lie group being a finite-dimensional manifold.

Remark 1. We denote the elements of the Lie group M as points of manifold M, i.e.,
by the symbol m, m(-) or m(t) are curves on M. But for simplicity of presentation, the
element considered as a diffeomorphism in M, is denoted by the symbol g. In particular
Gmo,m, denotes the unique diffeomorphsm that sends mgy to mi. T'gyg.m, : TngM — Ty M
is its tangent mapping.

Introduce an arbitrary complete Riemannian metric (-, ) on M (not necessarily left or
right invariant). The corresponding norms in the tangent spaces are denoted by || - ||.

Consider the Banach manifold C*([0,T], M) of C'-smooth curves in M. According to
Remark 1, for m(t) € C*([0,T], M) denote by gym(0)m() the element of Lie group (i.e., the
operator) that sends m(0) to m(t), and by T'gn0)m@) : T M — ThnpM the tangent
map of this operator. For m(t) € C*([0,T], M) introduce the operator B, by the formula

By(m(-)) = 8 0 Tgm0),sorxt;m@))s) L X (£, m(t)) (1)

that sends the vectors I'X (¢, m(t)) at m(0) to the points at time instant s of the curves
from S o I'X (¢, m(t)). One can easily see that By is continuous.

Let also the vector field X (¢,m) be T-periodic, i.e., for every m € M the equality
X(t,m) = X (t+T,m) holds. In this case we will mainly deal with the operator By(m(-)) =

S 0 Tgm(0),sorx(t;m(t) (1) L X (£, m(1)).

Theorem 5. Fized points of operator Br and only they are T-periodic solutions of the
equation m'(t) = X (t,m(t)).

Proof. Let m(t) be a T-periodic solution of the equation m’(t) = X (¢,m(t)). Then
gm(o)@opX(m(.)(T))m(O) = m(0) and so for X (¢, m(t))

Tgm(O),m(T)S o Tgm(O),SoFX(t,m(t)))FX (ta m(t)) = FX(ta m(t>>

Then Br(m(-)) = S o I'X(¢t,m(t)). Recall that I'X(¢,m(t)) is parallel along m(-) to
X(t,m(t)). On the other hand, 48 o I'X (¢, m(t)) is parallel along m(-) to I'X (¢, m(t)
and so

d
S oTX (. m(1)) = X (t,m(t)).

Thus m(t) is a fixed point of Br(m(-).

Now let m(t) be an arbitrary curve in C'([0,T], M). If S o TX (t,m(¢))(T) = m(0),
the above arguments are valid and so m(t) is both a fixed point of By and a T-periodic
solution. If S o I'X (¢, m(t))(T") # m(0), m(t) is neither a fixed point of By nor a periodic
solution.

O

Recall the following notion.

Definition 1. A map from the topological space Y to the topological space Z is called
proper, if the preimage of every relatively compact set in Z is relatively compact in'Y . In
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particular, a function p : M — R is called proper if the preimage of every bounded subset
of R is relatively compact in M.

Let = C M be a compact set. Denote by € C C([0,7], M) the set of curves
{m(t)|m(0) € =,t € [0,7]}. Since all curves from € are given on the closed interval
[0,7] and M is complete, all the curves from € lie in another compact set =;.

Theorem 6. Let for any compact set = C M
sup || X (¢, m)|| < sup p(m) (2)

meE,te[0,T] meE
where ¢ : M — R is a certain proper function. Then for all m(-) € € c CY([0,T], M),
all curves S o TX(t,m(t)) are well-defined on [0,T] and belong to another compact set
o C M.

Proof. From (2) it follows that the norms of all X (¢, m(t)) for m(-) € € are uniformly
bounded by sup ¢(m). Since the parallel translation preserves the norms, all norms of

me=q
the corresponding curves I'X (¢, m(t)) are uniformly bounded by the same constant. Thus
all the C'-curves S o I'’X (¢, m) have bounded lengths. Since the metric is complete, those

curves lie in a compact set =Z,. O
Theorem 7. The set of curves B,€ C C'([0,T], M) is compact in C*([0,T], M).

Proof. Since the set = is compact and the operators g, o)mr) and gm(o),sorx (m()(1))
are smooth by the definition of the Lie group, the norms of operators

T 91 0),m(1)S © T Gm(0),SoT X (t,m (1))

are also uniformly bounded. Then the assertion follows from Theorem 6 and Theorem 3.

([
Thus, unlike the classical integral operators in Euclidean spaces, only the second
iteration of operator B, is completely continuous.

2. The Topological Index of Maps on the Manifold

Let M be an n-dimensional noncompact manifold and €2 a domain in M homeomorphic
to an open ball in R™. By Q we denote the closure of 2, and by 99 its boundary. We will
suppose everywhere that € is homeomorphic to a closed ball and hence it is compact.
Notice that it does not follow from the homeomorphism of €2 to an open ball.

Let F : Q — M be a continuous map which is fixed point free on the boundary 909
(i.e., x # F(x), Vo € 09).

By the Whitney theorem (see, e.g., [3]) the manifold M can be embedded into the
Euclidean space RY of sufficiently large dimension N > 2n+1. Let W C R" be a tubular
neighborhood of M and r: W — M a retraction. Let U C W be an open set such that
r(U) = Q. Let us extend the map F to U as F : U — M C RY by the formula

F(z) = F(r(x)).

By construction, it is clear that the map F is fixed point free on the boundary OU. This
means that for the corresponding vector ﬁild I — F, where I: RY — RY is the identity,
the topological degree (or rotation) (I — F,0U) is well defined (see, e.g., [4, 5]).
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Definition 2. The fixed point index of the map F on OS2 is defined in the following way
ind(F,08) :=~(I — F,0U).
First of all, let us mention that the above notion is well defined.

Theorem 8. The fized point index ind(F,0?) does not depend on the choice of space
RY, embedding, open set U, and retraction .

The proof of Theorem 8 (even for an infinite-dimensional case) can be found in [6].

Immediately from the construction it follows that the characteristic, defined above,
possesses usual properties, including homotopy invariance. It is also easy to see that its
difference from zero implies the existence of at least one fixed point of F' in (2.

For dealing with zeros of tangent and cotangent vector fields inside £ we have to apply
another construction of index.

Let a continuous tangent vector field X having no zero singular points be given on
09Q. Since Q is homeomorphic to a closed ball, there exists a neighbourhood V of Q that is
a chart, i.e., it can be presented as a set in R”, homeomorphic to an open ball. According
to this presentation the tangent vectors of X are becoming vectors in R™ (are embedded
into R™), and for the field X on 02 the ordinary topological degree of a vector field is
well defined. In order not to confuse it with the index of v(F,0Q) type, we denote it by
(X, 09). Note that the presentation of V' as a chart is ambiguously determined, but
different versions of such presentation are diffeomorphic to each other and so 7 does not
depend on the choice of such presentation, i.e., it is well defined. Since by the use of a
scalar product in R" the cotangent vectors (1-forms) can be identified with the tangent
ones, the index 7 is well defined for cotangent vectors also.

Let a continuous map ® : 92 — M be given.
Definition 3. We call ® admissible on Q, if for every m €Q the point ®(m) belongs to V.

Definition 4. The fized point index of 7 type for an admissible map ® is defined by the

formula e
ind(®,00) :=75(I — @,00).

Consider the case where the above considered map F' is admissible. In this situation,
besides index ind(F, 0f2) we can deal with the index ind(F, 0f2).

Theorem 9. Let the mapping F be admissible on Q. Then
ind(F,0Q) = ind(F, 09).

Proof. In fact we have to show that (1 — F,0U) coincides with (I — F,99). Since I’
sends U to V and on V it coincides with F', this fact follows from the principle of a map
restriction (see, e.g., [4, 5]).

([

3. The Main Result

Let o : M — R be a proper function. By the symbol X we denote the derivative of
a function ¢ in the direction of a vector field X. Recall that always

X =dp(X),
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where dp(X) denotes the value of the 1-form dy on the vector X. Notice also that if a
Riemannian metric is given on M (e.g., the Euclidean metric (-, -) after embedding of M
into RY or a complete Riemannian metric (-,-) introduced of the Lie group M above),
then

Xy =dp(X) = (grad ¢, X).

Notice that if a non-autonomous vector field X (¢,m) for all ¢ does not equal to zero
on 02, the fields at different values of ¢ are homotopic to each other without zeroes on
09, i.e., they have the same indices ind. In particular the fields X (¢, m) on OS2 for all ¢ do
not equal to zero if for all ¢ on OS2 the relation X¢ > 0 holds for .

In the next theorem we deal with the compact set  as in Section 2 instead of an
arbitrary compact set = as in Theorem 6 but keep notation =Z; and =, for the corresponding
compact sets in Theorem 6.

Theorem 10. Let X (t,m) be a continuous T -periodic vector field on R x M, i.e.,
X{t+T,m)=X(t,m), YVteR meM
and let a smooth proper function ¢ : M — R, be such that:
(1) for every X(0,m), m € 02, the relation
de(X(0,m)) >0 (3)
holds;
(ii) the hypothesis of Theorem 6 is fulfilled;

(iii) for every Ct-smooth curve m(t), t € [0,T], m(0) € 99, the property
m(0) ¢ So'X(t,m(t)) and m(0) ¢ Bs(m(-)) for every s and t is fulfilled;

(1v) the relation
ind(grad g, ) # 0 (4)
holds.

Then there exists a T-periodic solution of equation m/(t) = X(t,m(t)) with an initial
condition in €.

Proof. From (3 ) it follows that on 0N for all ¢ the field X (¢,m) does not equal zero,
i.e., the index ind(X U) is well defined. Since from (3) for every ¢ the inequality

(X, grady) >0

holds, the angle between the vectors X and grad ¢ is acute. Thus, the linear homotopy
between these vectors has no zeroes on 92 and so

ind(X, Q) # 0.

From Theorem 7 and the material of Section 2 it follows that on ¢ (the closure of €
introduced in Section 3) the index ind(Br, €) is well-defined. For a curve m(-) € € consider
X(t,m(t)), then consider the curve S o I'X (¢, m(t)) and finely the curve

S 0 T'gm(0) sorx (t;m()) () L X (£, m(t)) = Br(m(-)).
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For all curves of the last type we can introduce the following homotopy

S 0 T gim(0),SoX (t;m(t)) (to+x7) [ X (£, m(AL))

for A € [0,1]. For A\ = 1 this homotopy takes the value of By and for A = 0 it sends
C([0,T], M) into its subspace consisting of constant functions that is naturally isomorphic
to M. Note that this homotopy for A = 0 takes the value Br(m(-))(0) = SoI' X (¢, m(t)) (o).
By (iv) this homotopy has no singular points if m(0) € 9U. So, ind(Br, €) = ind(S o

L'X (t,m(t))(to), ). By the restriction property of the degree

ind(S o T X (t,m(t))(ty),C) = ind(S o T X (t,m(t))(to), U).
For ¢, sufficiently small the mapping S o ' X (¢, m(t))(ty) is admissible. So,
ind(8 o TX (t, m(1))(to). T)

is well defined. Notice that X (0,m(0)) is the initial tangent vector of the curve S o
I'X (t.m(t)). Thus one can easily see that

ind(S o TX (t,m(t))(to), U) = ind(X (0, m(0)),T) # 0.

Then ind(Br, €) # 0 and by Theorem 5 equation m/(t) = X (¢, m(t)) has a T-periodic
solution.
O
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O IIEPNOJINYECKIUX PEINIEHNAX
IN®PEPEHITNAJIBHBIX YPABHEHUN

C HEIIPEPBIBHBIMU ITPABBIMU YACTAMMUA
HA T'PVYIIITAX JIN

IO. E. I'uxkaux

B pabore mpumensiercss MeTon HANPABJIAONMUX (DYHKIUN JJIsI [TOJIYIEHUST TEOPEMbI
CyIIeCTBOBAHUS IEPUOJIMIECKUX peleHuil auddepeHIualbHblX YPAaBHEHUN C HeIpepbiB-
HBIMU TIEPUOJUIECKUMU IIPABBIMEU YacCTsIMU Ha rpynmnax Jlu, T.e. pemrenust 3amadn Ko
JIJIs TIOMOOHBIX YPaBHEHHUI HE eIUHCTBEHHBI. UTOOBI M30eKaTh TPYIHOCTEH OBLI pa3pado-
TaH allapaT WHTErPAJIbHBIX OIEPATOPOB C MapAJIEILHBIM IIEPEHOCOM TAKWUX, ITO i T -
[IEPUO/INIECKOr0 OOBIKHOBEHHOTO MuddepeHnaabHoro ypasuenus na rpymnmne Jlu ¢ memnpe-
PBIBHOII IIPABOii YaCThIO HEMOJBUYKHBIE TOUYKH SABJISIIOTCS 1 -IT€PUOIMIECKUMU PEIIEHUSIMH.
[TokazaHo, YTO IPH BBIIOJHEHUN HEKOTOPBIX €CTECTBEHHBIX YCIOBUI BTOPBIE UTEPAIIAN yKa-
3aHHBIX OIIEPATOPOB BIIOJIHE HEIIPEPBIBHBL. MeTo 1 HAlIPaB/ISIONX (DYHKIUN C YKa3aHHBIMI
OIIEPATOPAMU TIO3BOJISIET MOJIYIUTh UCKOMYIO TEOPEMY CYINECTBOBAHUS TIEPUOINIECKUX De-
mennii. PaboTa comepKuT KpaTKuit 0030p TeOPUN MHTErPAIBHBIX OIIEPATOPOB C MAPAJIIETb-
HBIM TIEPEHOCOM M MOAU(MUKAINI KOHCTPYKIUMH TOIOJIOIMIECKOr0 UHIEKCa, IPUMEHUMYO
Ha MHOTI000pa3usX.

Karoueswie crosa: epynnot Jlu; obviknosennvie duddeperiuarvisie YypasHeHus; unme-
2PAALHYLE ONEPATNOPYL C NEPEANEALHBIM NEPEHOCOM; MONONOLUNECKUT, UHOEKC 1A MH02000-

PABUALT; NEPUOOUNECKUE PEUCHUA.
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