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We apply the method of guiding potentials to obtain an existence of periodic solution
theorem to a differential equation with continuous periodic right-hand side on a Lie group,
i.e., the solution of the Cauchy problem for this equation is not unique. To avoid this
difficulty we elaborate the machinery of integral operators with parallel translation such
that for a T -periodic ordinary differential equation (i.e., a vector field) on a Lie group
with continuous right-hand side the fixed points of those operators are T -periodic solutions.
It is shown that under some natural conditions the second iteration of such operator is
completely continuous. The method of guiding potentials with those operators allows us to
obtain the existence theorem we are looking for. The paper contains a short survey of the
theory of integral operators with parallel translation and a modification of the construction
of topological index applicable on the manifolds.
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Introduction

We apply the method of guiding potentials to obtain an existence of periodic solution
theorem to a differential equation with continuous periodic right-hand side on a Lie group.
For such equations the solution of the Cauchy problem is not unique. In [1] we considered
analogous problem on a non-compact manifold in the case where the right-hand side was
C1 smooth so that the solution of the Cauchy problem was unique and it was possible to
use the operator of translation along the trajectories. In order to avoid the difficulty with
non-uniqueness of the solution of the Cauchy problem, we have elaborated the machinery of
integral operators with parallel translation whose second iteration is completely continuous
and whose fixed points are the periodical solutions. The method of guiding potentials with
those integral operators allows us to obtain the existence theorem we are looking for.

The paper contains a short survey of the theory of integral operators with parallel
translation and a modification of the construction of topological index applicable on the
manifolds.

1. Integral Operators with Parallel Translation

Everywhere below we deal with all objects given on a finite interval [0, T ], T > 0.
Let M be a complete Riemannian manifold, m0 ∈ M and v : [0, T ] → Tm0

M be a
continuous curve in the tangent space Tm0

M . Everywhere below we deal with the Levi-
Civita connection on M .
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Theorem 1. There exists a unique C1-curve m : [0, T ] → M such that m(0) = m0 and
the tangent vector m′(t) is parallel along this curve to the vector v(t) ∈ Tm0

M for every
t ∈ [0, T ].

The existence of the curve m(t) from Theorem 1 follows from some classical
constructions. Let m(t) be a C1-smooth curve in M , t ∈ [0, T ], m(0) = m0. Denote
by Γ the operator of parallel translation of vector fields along m(·) to Tm0

M . Recall that

the curve C(m(t)) =

t∫

0

Γm′(s)ds is known as Cartan’s development of m(t) at Tm0
M . Note

the well-known fact that Cartan’s development is convertible and it is obvious that the

curve m(t) from Theorem 1 is expressed via Cartan’s development as C−1




t∫

0

v(s)ds


.

We denote the operator that sends v(t) to m(t) in Theorem 1 by the symbol S. It is
easy to show that S is continuous.

Since the parallel translation preserves the norm of the vector, the following statement
is valid.

Theorem 2. Let UK be the ball of the radius K centered at the origin of the space
of continuous curves C0([0, T ], Tm0

M). Then, at every point t ∈ [0, T ], the inequality∥∥m′(t)
∥∥ ≤ K holds for all curves m(·) from the set SUK .

Lemma 1. (Compactness lemma) Let Ξ ⊂ C0([0, T ], TM) be such that πΞ ⊂
C1([0, T ],M), where π : TM → M is the natural projection. If Ξ is relatively compact
in C0([0, T ], TM), then so is ΓΞ.

The proof of Lemma 1 can be found, e.g., in [2, Lemma 3.51].
Let ΩK be the set of curves from C1([0, T ],M) satisfying the inequality ‖m′(t)‖ ≤ K,

where K > 0 is a real number, at every point t ∈ [0, T ] and such that the set
{
m(0)

∣∣
m(·) ∈ ΩK

}
is relatively compact in M .

Theorem 3. The set of curves Γ(ΩK) is relatively compact in C0([0, T ], TM).

Proof. Since ΩK is compact in C0([0, T ],M) and the field X(t,m) is continuous, the
set of curves

{
X
(
t,m(t)

) ∣∣ m(·) ∈ ΩK

}
is compact in C0([0, T ], TM). Then the aqssertion

follows from Lemma 1.

2

Let a continuous vector field X(t,m) be given on M . Consider the set C1
m0

([0, T ],M) ⊂
C1([0, T ],M) consisting of curves with initial value m(0) = m0. Introduce the composition
operator

S ◦ ΓX(t,m(t)) : C1
m0

([0, T ],M) → C1
m0

([0, T ],M).

One can easily see that this operator is continuous since the parallel translation
continuously depends on the curves, along which it is carried out.

Theorem 4. The fixed point of S◦Γ is precisely the solution of equation m′(t) = X(t,m(t))
with the initial condition m(0) = m0.
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Indeed, if m(t) is a fixed point, m′(t) is parallel along m(t) to ΓX(t,m(t)). But by
construction ΓX(t,m(t)) is parallel to X(t,m(t)). Hence m′(t) = X(t,m(t)).

Now let M be a Lie group being a finite-dimensional manifold.

Remark 1. We denote the elements of the Lie group M as points of manifold M , i.e.,
by the symbol m, m(·) or m(t) are curves on M . But for simplicity of presentation, the
element considered as a diffeomorphism in M , is denoted by the symbol g. In particular
gm0,m1

denotes the unique diffeomorphsm that sends m0 to m1. Tgm0,m1
: Tm0

M → Tm1
M

is its tangent mapping.

Introduce an arbitrary complete Riemannian metric 〈·, ·〉 on M (not necessarily left or
right invariant). The corresponding norms in the tangent spaces are denoted by ‖ · ‖.

Consider the Banach manifold C1([0, T ],M) of C1-smooth curves in M . According to
Remark 1, for m(t) ∈ C1([0, T ],M) denote by gm(0),m(t) the element of Lie group (i.e., the
operator) that sends m(0) to m(t), and by Tgm(0),m(t) : Tm(0)M → Tm(t)M the tangent
map of this operator. For m(t) ∈ C1([0, T ],M) introduce the operator Bs by the formula

Bs(m(·)) = S ◦ Tgm(0),S◦ΓX (t,m(t))(s))ΓX(t,m(t)) (1)

that sends the vectors ΓX(t,m(t)) at m(0) to the points at time instant s of the curves
from S ◦ ΓX(t,m(t)). One can easily see that Bs is continuous.

Let also the vector field X(t,m) be T -periodic, i.e., for every m ∈ M the equality
X(t,m) = X(t+T,m) holds. In this case we will mainly deal with the operator BT (m(·)) =
S ◦ Tgm(0),S◦ΓX(t,m(t))(T ))ΓX(t,m(t)).

Theorem 5. Fixed points of operator BT and only they are T -periodic solutions of the
equation m′(t) = X(t,m(t)).

Proof. Let m(t) be a T -periodic solution of the equation m′(t) = X(t,m(t)). Then
gm(0),S◦ΓX(m(·)(T ))m(0) = m(0) and so for X(t,m(t))

Tgm(0),m(T )S ◦ Tgm(0),S◦ΓX(t,m(t)))ΓX(t,m(t)) = ΓX(t,m(t)).

Then BT (m(·)) = S ◦ ΓX(t,m(t)). Recall that ΓX(t,m(t)) is parallel along m(·) to
X(t,m(t)). On the other hand, d

dt
S ◦ ΓX(t,m(t)) is parallel along m(·) to ΓX(t,m(t))

and so
d

dt
S ◦ ΓX(t,m(t)) = X(t,m(t)).

Thus m(t) is a fixed point of BT (m(·).
Now let m(t) be an arbitrary curve in C1([0, T ],M). If S ◦ ΓX(t,m(t))(T ) = m(0),

the above arguments are valid and so m(t) is both a fixed point of BT and a T -periodic
solution. If S ◦ ΓX(t,m(t))(T ) 6= m(0), m(t) is neither a fixed point of BT nor a periodic
solution.

2

Recall the following notion.

Definition 1. A map from the topological space Y to the topological space Z is called
proper, if the preimage of every relatively compact set in Z is relatively compact in Y . In
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particular, a function ϕ : M → R is called proper if the preimage of every bounded subset
of R is relatively compact in M .

Let Ξ ⊂ M be a compact set. Denote by C ⊂ C1([0, T ],M) the set of curves
{m(t)|m(0) ∈ Ξ, t ∈ [0, T ]}. Since all curves from C are given on the closed interval
[0, T ] and M is complete, all the curves from C lie in another compact set Ξ1.

Theorem 6. Let for any compact set Ξ ⊂ M

sup
m∈Ξ,t∈[0,T ]

‖X(t,m)‖ < sup
m∈Ξ

ϕ(m) (2)

where ϕ : M → R is a certain proper function. Then for all m(·) ∈ C ⊂ C1([0, T ],M),
all curves S ◦ ΓX(t,m(t)) are well-defined on [0, T ] and belong to another compact set
Ξ2 ⊂ M .

Proof. From (2) it follows that the norms of all X(t,m(t)) for m(·) ∈ C are uniformly
bounded by sup

m∈Ξ1

ϕ(m). Since the parallel translation preserves the norms, all norms of

the corresponding curves ΓX(t,m(t)) are uniformly bounded by the same constant. Thus
all the C1-curves S ◦ ΓX(t,m) have bounded lengths. Since the metric is complete, those
curves lie in a compact set Ξ2. 2

Theorem 7. The set of curves BsC ⊂ C1([0, T ],M) is compact in C1([0, T ],M).

Proof. Since the set Ξ2 is compact and the operators gm(0),m(T ) and gm(0),S◦ΓX(m(t)(T ))

are smooth by the definition of the Lie group, the norms of operators

Tgm(0),m(T )S ◦ Tgm(0),S◦ΓX(t,m(t)))

are also uniformly bounded. Then the assertion follows from Theorem 6 and Theorem 3.
2

Thus, unlike the classical integral operators in Euclidean spaces, only the second
iteration of operator Bs is completely continuous.

2. The Topological Index of Maps on the Manifold

Let M be an n-dimensional noncompact manifold and Ω a domain in M homeomorphic
to an open ball in R

n. By Ω we denote the closure of Ω, and by ∂Ω its boundary. We will
suppose everywhere that Ω is homeomorphic to a closed ball and hence it is compact.
Notice that it does not follow from the homeomorphism of Ω to an open ball.

Let F : Ω → M be a continuous map which is fixed point free on the boundary ∂Ω
(i.e., x 6= F (x), ∀x ∈ ∂Ω).

By the Whitney theorem (see, e.g., [3]) the manifold M can be embedded into the
Euclidean space R

N of sufficiently large dimension N ≥ 2n+1. Let W ⊂ R
N be a tubular

neighborhood of M and r : W → M a retraction. Let U ⊂ W be an open set such that
r(U) = Ω. Let us extend the map F to U as F : U → M ⊂ R

N by the formula

F (x) = F (r(x)).

By construction, it is clear that the map F is fixed point free on the boundary ∂U . This
means that for the corresponding vector field I − F , where I : RN → R

N is the identity,
the topological degree (or rotation) γ(I − F , ∂U) is well defined (see, e.g., [4, 5]).
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Definition 2. The fixed point index of the map F on ∂Ω is defined in the following way

ind(F, ∂Ω) := γ(I − F , ∂U).

First of all, let us mention that the above notion is well defined.

Theorem 8. The fixed point index ind(F, ∂Ω) does not depend on the choice of space
R

N , embedding, open set U , and retraction r.

The proof of Theorem 8 (even for an infinite-dimensional case) can be found in [6].
Immediately from the construction it follows that the characteristic, defined above,

possesses usual properties, including homotopy invariance. It is also easy to see that its
difference from zero implies the existence of at least one fixed point of F in Ω.

For dealing with zeros of tangent and cotangent vector fields inside Ω we have to apply
another construction of index.

Let a continuous tangent vector field X having no zero singular points be given on
∂Ω. Since Ω is homeomorphic to a closed ball, there exists a neighbourhood V of Ω that is
a chart, i.e., it can be presented as a set in R

n, homeomorphic to an open ball. According
to this presentation the tangent vectors of X are becoming vectors in R

n (are embedded
into R

n), and for the field X on ∂Ω the ordinary topological degree of a vector field is
well defined. In order not to confuse it with the index of γ(F, ∂Ω) type, we denote it by
γ̂(X, ∂Ω). Note that the presentation of V as a chart is ambiguously determined, but
different versions of such presentation are diffeomorphic to each other and so γ̂ does not
depend on the choice of such presentation, i.e., it is well defined. Since by the use of a
scalar product in R

n the cotangent vectors (1-forms) can be identified with the tangent
ones, the index γ̂ is well defined for cotangent vectors also.

Let a continuous map Φ : ∂Ω → M be given.

Definition 3. We call Φ admissible on Ω, if for every m∈Ω the point Φ(m) belongs to V .

Definition 4. The fixed point index of γ̂ type for an admissible map Φ is defined by the
formula

înd(Φ, ∂Ω) := γ̂(I − Φ, ∂Ω).

Consider the case where the above considered map F is admissible. In this situation,
besides index ind(F, ∂Ω) we can deal with the index înd(F, ∂Ω).

Theorem 9. Let the mapping F be admissible on Ω. Then

ind(F, ∂Ω) = înd(F, ∂Ω).

Proof. In fact we have to show that γ(I −F , ∂U) coincides with γ̂(I −F, ∂Ω). Since F
sends U to V and on V it coincides with F , this fact follows from the principle of a map
restriction (see, e.g., [4, 5]).

2

3. The Main Result

Let ϕ : M → R be a proper function. By the symbol Xϕ we denote the derivative of
a function ϕ in the direction of a vector field X. Recall that always

Xϕ = dϕ(X),
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where dϕ(X) denotes the value of the 1-form dϕ on the vector X. Notice also that if a
Riemannian metric is given on M (e.g., the Euclidean metric (·, ·) after embedding of M
into R

N or a complete Riemannian metric 〈·, ·〉 introduced of the Lie group M above),
then

Xϕ = dϕ(X) = (grad ϕ,X).

Notice that if a non-autonomous vector field X(t,m) for all t does not equal to zero
on ∂Ω, the fields at different values of t are homotopic to each other without zeroes on
∂Ω, i.e., they have the same indices înd. In particular the fields X(t,m) on ∂Ω for all t do
not equal to zero if for all t on ∂Ω the relation Xϕ > 0 holds for ϕ.

In the next theorem we deal with the compact set Ω as in Section 2 instead of an
arbitrary compact set Ξ as in Theorem 6 but keep notation Ξ1 and Ξ2 for the corresponding
compact sets in Theorem 6.

Theorem 10. Let X(t,m) be a continuous T -periodic vector field on R×M , i.e.,

X(t+ T,m) = X(t,m), ∀t ∈ R, m ∈ M

and let a smooth proper function ϕ : M → R+ be such that:

(i) for every X(0, m), m ∈ ∂Ω, the relation

dϕ(X(0, m)) > 0 (3)

holds;

(ii) the hypothesis of Theorem 6 is fulfilled;

(iii) for every C1-smooth curve m(t), t ∈ [0, T ], m(0) ∈ ∂Ω, the property
m(0) /∈ S ◦ ΓX(t,m(t)) and m(0) /∈ Bs(m(·)) for every s and t is fulfilled;

(iv) the relation

înd(grad ϕ,Ω) 6= 0 (4)

holds.

Then there exists a T -periodic solution of equation m′(t) = X(t,m(t)) with an initial
condition in Ω.

Proof. From (3) it follows that on ∂Ω for all t the field X(t,m) does not equal zero,

i.e., the index înd(X, U) is well defined. Since from (3) for every t the inequality

(X, grad ϕ) > 0

holds, the angle between the vectors X and grad ϕ is acute. Thus, the linear homotopy
between these vectors has no zeroes on ∂Ω and so

înd(X,Ω) 6= 0.

From Theorem 7 and the material of Section 2 it follows that on C (the closure of C
introduced in Section 3) the index ind(BT ,C) is well-defined. For a curve m(·) ∈ C consider
X(t,m(t)), then consider the curve S ◦ ΓX(t,m(t)) and finely the curve

S ◦ Tgm(0),S◦ΓX(t,m(t))(T ))ΓX(t,m(t)) = BT (m(·)).
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For all curves of the last type we can introduce the following homotopy

S ◦ Tgm(0),S◦ΓX(t,m(t))(t0+λT ))ΓX(t,m(λt))

for λ ∈ [0, 1]. For λ = 1 this homotopy takes the value of BT and for λ = 0 it sends
C1([0, T ],M) into its subspace consisting of constant functions that is naturally isomorphic
to M . Note that this homotopy for λ = 0 takes the value BT (m(·))(0) = S◦ΓX(t,m(t))(t0).
By (iv) this homotopy has no singular points if m(0) ∈ ∂U . So, ind(BT ,C) = ind(S ◦
ΓX(t,m(t))(t0),C). By the restriction property of the degree

ind(S ◦ ΓX(t,m(t))(t0), C) = ind(S ◦ ΓX(t,m(t))(t0), U).

For t0 sufficiently small the mapping S ◦ ΓX(t,m(t))(t0) is admissible. So,

înd(S ◦ ΓX(t,m(t))(t0), U)

is well defined. Notice that X(0, m(0)) is the initial tangent vector of the curve S ◦
ΓX(t.m(t)). Thus one can easily see that

înd(S ◦ ΓX(t,m(t))(t0), U) = înd(X(0, m(0)), U) 6= 0.

Then ind(BT ,C) 6= 0 and by Theorem 5 equation m′(t) = X(t,m(t)) has a T -periodic
solution.

2
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О ПЕРИОДИЧЕСКИХ РЕШЕНИЯХ
ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ
С НЕПРЕРЫВНЫМИ ПРАВЫМИ ЧАСТЯМИ
НА ГРУППАХ ЛИ

Ю. Е. Гликлих

В работе применяется метод направляющих функций для получения теоремы
существования периодических решений дифференциальных уравнений с непрерыв-
ными периодическими правыми частями на группах Ли, т.е. решения задачи Коши
для подобных уравнений не единственны. Чтобы избежать трудностей был разрабо-
тан аппарат интегральных операторов с параллельным переносом таких, что для T -
периодического обыкновенного дифференциального уравнения на группе Ли с непре-
рывной правой частью неподвижные точки являются T -периодическими решениями.
Показано, что при выполнении некоторых естественных условий вторые итерации ука-
занных операторов вполне непрерывны. Метод направляющих функций с указанными
операторами позволяет получить искомую теорему существования периодических ре-
шений. Работа содержит краткий обзор теории интегральных операторов с параллель-
ным переносом и модификацию конструкции топологического индекса, применимую
на многообразиях.

Ключевые слова: группы Ли; обыкновенные дифференциальные уравнения; инте-

гральные операторы с переллельным переносом; топологический индекс на многооб-

разиях; периодические решения.
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