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The article presents the results of computational experiments demonstrating the
importance of initial conditions in modeling the states of a measuring device in the algorithm
of the spline method. The discussed algorithm is one of the numerical methods used in
the theory of optimal dynamic measurements, which allow to find the input signal from
a known output signal (or observation) and a known transfer function of the measuring
device. In all formulations of the problem, it is assumed that the inertia of the measuring
device is taken into account, and the differences are due to the inclusion of interferences of
various natures in the mathematical model. Consideration of interference as “white noise”
led to the development of analytical and numerical methods for solving the problem under
discussion. The article briefly provides theoretical information and an overview of numerical
methods for using digital filters to process observation results with subsequent application
of the spline method. However, new experimental data have shown that the standard initial
conditions are insufficient to ensure connectivity conditions in the internal nodes of the
spline. The initial conditions are proposed in the article, and the results of computational
experiments are presented.
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Introduction

The theory of optimal dynamic measurements originates from a mathematical model
of restoring a dynamically distorted signal from a known observed output signal and
parameters of a measuring device (MD), which is based on the problem of optimal control
for a Leontief type system [1]. The measuring device is modeled by a Leontief type system
(or a description system)

(1)

where L and A are matrices that characterize the structure of the MD, in some cases it
is possible that det L = 0 [2]; z(¢) and #(t) are vector-functions of the state of the MD
and the velocity of the state change, respectively; y(t) is a vector-function of observation;
C' is a rectangular matrix characterizing the interrelation between the system state and
observation; wu(t) is a vector-function of measurements; B is a matrix characterizing

Lz = Az + Bu,
y=Cr,
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interrelation between the system state and measurement. If L is not degenerate then
system (1) can be reduced to
= Mux + Fu,
{ y = Cu,

where M = L7'A, F = L7 'B.
The initial Showalter — Sidorov condition

[(aL — A7 L]" (2(0) — 29) = 0 2)

reflects initial state of the MD for some zy € R", a € p"(M). The initial Showalter —
Sidorov condition is equivalent to the initial Cauchy condition x (0) = z( in the case of
det L # 0.

The unknown input signal is found as a solution to the optimal control problem in
which we minimize the penalty functional

J(v) = min J(x(u),u)

u€Uy

of the form )
1) = I(a(w) = 3 [ a0 - ) ar Q

The form of functional (3) determines the main idea of the mathematical model of optimal
dynamic measurements that is minimizing the discrepancy between the output signal
y(t) = Cz(t) modelled by system (1) and the observed output signal yo(t) (or observation)
according to the readings of MD and their derivatives [3]. The function v(t), at which the
minimum of the penalty functional is reached, is called the optimal dynamic measurement.

Assuming that the input signal is distorted by interferences of the “white noise” type, it
is necessary to consider the stochastic model of dynamic measurements, which is presented
in Section 1 of the article. In Section 2, we give a brief overview of the proposed approaches
to “purification” of observation [4] with the transition to a deterministic model of optimal
dynamic measurements. In Section 3, we discuss the advantages of using the Kotelnikov
sampling theorem for observations, and present the results of computational experiments.

1. Stochastic Model of Optimal Dynamic Measurements

Let Q = (Q, A, P) be a complete probability space, R be a set of real numbers endowed
with the Boreal o-algebra. The measurable mapping £ : €2 — R is called a random variable.
The set of random variables with ¢ = 0 and finite variance forms a Hilbert space Lo
with an inner product < &,& >= E(&&). Let I C R be some interval. The mapping
n: 1 xQ — R of the form n = n(t,w) is called an (one-dimensional) stochastic process,
therefore the value of the mapping n = n(¢, -) is a random variable for every fixed ¢ €
I, ie.n = n(t, -) € Ly and the value of a stochastic process n = n(-,w) is called a
(sample) trajectory for every fixed w € 2. The random process 7 is called continuous, if
almost surely all its trajectories are continuous. Denote by CLs the space of continuous
random processes. A continuous random process, which independent random variables

are Gaussian, is called Gaussian. Denote by 1® the (-th Nelson — Cliklikh derivative of
the stochastic process 1 [5]. The set of continuous stochastic processes having continuous

2024, vol. 11, no. 1 25



A. V. Keller, I. A. Kolesnikov

Nelson — Gliklikh derivatives up to order k& € N at each point of the set I forms a space,
which is denoted by C*Ls,.
Consider the stochastic model of the MD

{ L§:A€+B(u+¢), (4)
n=C§+v,
[(aL — A)7 L) (£(0) — &) = 0. (5)

Here the matrices L, A, B, C' have the same sense as in (1). Random processes ¢ and v
determine noises in the circuits and at the output of the MD, respectively.
Similarly to the deterministic case, when investigating the problem on restoration of
a dynamically distorted signal by random interference in the circuits and at the output of
the MD, we consider the control problem
J(v) = min J(u), (6)

u€Uyp

where the functional

J(u) = Z /

reflects the closeness of the real observation 7, (t) and the virtual observation 7(¢) obtained
on the basis of a mathematical model of the MD.

The minimum point v(¢) of functional on the set Uy that is a solution to optimal
control problem (4) — (7) is called an optimal dynamic measurement. In practice, there is
only indirect information about v(t).

° 2
10 = (0|t (7)

2. Digital Filters and Spline Method

One of the developed directions in the theory of optimal measurements is the
application of various methods to filtering the observation in order to obtain a smoothed
observation function 7,(¢) with a subsequent transition from stochastic model of optimal
dynamic measurements (4) — (7) to the deterministic model

{Li:AE+Bm

y = C7,
[(aL — A7 L) (2(0) — ) = 0, (9)
J(%—ggJ(@)ﬂ (10)

J(a@) = 70 (1) — 707 (¢)

dt. (11)

Note that the solution ¥ to problem (8) — (11) is an approximate solution to problem
(4) - (7).

To obtain a smoothed observation, the work [6] uses an algorithm for constructing a
smoothed one-dimensional observation signal under the condition that the signal shape is
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convex upwards and has a single maximum point. To accept the assumption of similarity
of an observation and a smoothed observation function, we test a statistical hypothesis of
normal distribution of the parameters for the cross sections of the process 7y. In addition,
in combination with the numerical algorithm described in [7], this approach allows to take
into account the condition of degradation of the MD.

To obtain a smoothed observation, the works [8] and [9] use a digital moving
average filter and the Savitsky — Golay digital filter, respectively. In both cases, for each
experiment, it is necessary to select the parameters of digital filters that are the value
and shift of the time window, data weights, which is a disadvantage of such methods.
The advantage of these methods is their simplicity and the insignificance of information
about the numerical characteristics of the noise. The work [10] uses an one-dimensional
Kalman filter to obtain a smoothed observation under the assumption that “white noise”
takes place only at the output of the MD. Note that its application requires information
about the noise variance.

Note that all numerical algorithms for solving problem (8) — (11) use the approaches
described in detail in [11, 12].

Let us describe the spline method for solving the problem of optimal dynamic
measurement.

Suppose that the following components are given: the matrices included in system
(4), the initial value zq € R"; the array of observed values Yy, at the nodal points t; =
0,1,...,n of the output signal, and t;. 1 —t; =9, to =0, t, = 7.

Step 1. Divide the interval [0, 7]into M intervals [7,,—1, 7], where m = 1,2,... M,
and tg =1y =0, t, = 7.

Step 2. At each interval [7,, 1, T.,], construct the interpolation function y§,,(t) in the
form of a polynomial of the degree ¢ < (n— 1) /M.

Step 3. For m = 1, 2,..., M at [7,_1, 7], consecutively solve the optimal dynamic
measurement problem.

{7 e E
[(aL — A L] @ (0) = o) = 0, (13)
J@) = min J(Z,(7),7), (14)

J(@) = J(@@)=) / 1CTn () = @ ()] d. (15)

We find the approximate value of the optimal measurement ¢, (¢) in the form of a
polynomial of the degree ¢ imposing the continuity condition

Ty (Tim) = T2 (7). (16)

for u € Ay,,, where Uy,, C Ay is a closed convex subset of 2y.
Step 4. As a result, we get a spline function

9() = [J vk ()

m

continuous on [0, 7].
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3. About the Initial Conditions

We will conduct computational experiments using the results of the experiment with
the sensor, which is based on the system

Lfl - f27
LTy = —25T — 5Ty + 257, (17)
Y = Tz,

The test signal is one period of a sine wave with an amplitude of 0.48 V', a frequency
of 2Hz, with a phase shift of 270 degrees and a constant offset of 0.48 V/

3
u = 0.48sin (zm n g) 1048,  t=1[0,27].

In all the figures, the test signal is displayed in a blue graph. In the first case, the observed
signal (green graph) is distorted only by the inertia of the measuring device (Figure 1).

In the second case, the observed signal (green graph) is distorted by the inertia of the
measuring device and white noise ) (Figure 2). In this case, the summand is added to the
third equation of the system

L7, = T,
Lxg = —25T — 5Ty + 25U, (18)
y - f2 + m,

When restoring the input signal using the spline method algorithm, we assume the
following initial conditions

Ti(Tmo1) =&m1,  TaTmo1) = P, (19)

where &,-1 = Yo(Tm-1); Pm—1 = Yo(Tm—1). The implementation of the algorithm was
stopped after step 20 due to an increase in error with each subsequent step (Figure 3).
A similar situation (Figure 4) was obtained using the following initial conditions

T (Tm) = fma f2(7-7)171) = Pm—1, (20>

where &, = yo(7).
when using the initial conditions of the form

f1(7-m) = gma E2(7m> = DPm- (21)

or
T1(Tm1) =&n1, T2(Tm) = Py (22)

where pp—1 = y,(Tm—1). The results of restoring the input signal are shown in the Fig.
5 and Fig. 6. Note that incomplete testing of the inertia of the measuring device when
solving the problem of restoring the input signal is quite common.

For the second case, in the presence of white noise, the initial conditions of four types
were also used. The results of one cycle of the method described in [13]| are shown in the
Fig. 7 - 10.
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Fig. 1. The first case: blue color — u(t), greenFig. 2. The second case: blue color — u(t),

green color — yo(t)

color — yo(t)
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Fig. 4. The first case. Initial conditions (20)

Fig. 3. The first case. Initial conditions (19)
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Fig. 6. The first case. Initial conditions (22)

Fig. 5. The first case. Initial conditions (21)
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Thus, when implementing the spline method, it is necessary to use the initial conditions
of the form (21) or (22) that better ensure the connection of the spline links in the internal
nodes.
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OB OCOBEHHOCTAX MATEMATNYECKOU MOJIEJIN
OTITUMAJILHOTO JTUHAMNYECKOT'O N3MEPEHU A
TP PEAJIN3AIIUN CIIJIATH-METOJIA

A. B. Keanep, U. A. Koaecnuxos

B crarbe mpejscraBiieHbl PE3Y/IBTATHI BHIYUCIUTEIBHBIX IKCIEPUMEHTOB, JIEMOHCTDU-
PYIOIIUX Ba’KHOCTb HAYAJbHBIX YCJIOBHUI IIPU MOJEIUPOBAHUN COCTOSTHUI M3MEPUTEHHOIO
YCTPOICTBa B ajropurMe cruiaiin-meroa. OOCyKIaeMblil aJITOPUTM SIBJISIETCS OJTHUM U3
UCTIOJIB3YEMbIX B TEOPUH ONTUMAJIBHBIX JIMHAMUYECKUX U3MEPEHUil YMCJIEeHHBIX METO/IOB,
HO3BOJISIONIMX 110 MU3BECTHOMY BBIXOJHOMY CHUIHAJy (MM HAOJIIOJEHUIO) W U3BECTHOI I1e-
pPeIaToOYHON (PYHKIMU M3MEPUTEJBHOIO YCTPOCTBa HAXOIUTh BXOJHONM curHay. Bo Bcex
[TOCTAHOBKAX 3aJ[a4U [IPEJIII0IaraeTcsl yIeT HHEPIIMOHHOCTH U3MEPUTETLHOTO YCTPOMRCTBA, &
pazngus 00yCJIOBJIEHBI BKIIIOYEHHEM B MATEMATHIECKYIO MOJIE/Ih PA3JIMIHBIX [0 ITPUPOJIE
moMex. PaccMoTperne moMexu B KadecTBe “0esoro IrymMa’ MPUBEO K PA3BUTHIO AHAJTUTH-
YECKUX M YUCJIEHHBIX METOJIOB pelleHus o0Cy»KJIaeMoil 3ajadu. B craThbe KpaATKo MpuBe-
JIEHBI T€OPEeTUYEeCKHe CBeJeHNsI U 0030D YHCJIEHHBIX METOJOB II0 WCIOJIb30BAHUIO IHU(PO-
BBIX (DUJIBTPOB [JIsi 06pabOTKK Pe3yJIbTATOB HAOJIIOAEHUs] C MOCJIEIYONUM IIPUMEHEHIeM
crtaita Metosia. OHAKO HOBBIE IKCIIEPUMEHTAJbHBIE JIAHHBIE TOKA3AJIM HEJIOCTATOYHOCTH
CTaHJIAPTHBIX HAYAJIHHBIX YCJIOBUIA JIJIsI 00ECHEYeHUs] YCIOBUN CBSI3aHHOCTH BO BHYTPEH-
HUX y3Jax CIuiaiiHa. B crarbe mpejioxKeHbl HAYaIbHbIE YCIOBUsI, TPUBEICHBI PE3YJIbTATEI
BBIUKCJIATEIbHBIX SKCIIEPUMEHTOB.

Karouesvie caosa: onmumasvrvie JuHAMUYECKUe U3MEPEHUS; CNAGTH MEMOJ; CUCTEME

AEOHMDBEBCKO20 MUNA, HAYAADHDIE YCAOBUSA.
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