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The article considers the stochastic Dzekzer equation, which describes the evolution
of the free surface of a filtered liquid. To study the stability and instability of solutions
and the stabilization of unstable solutions, this equation in suitable functional stochastic
spaces is considered as a linear stochastic equation of the Sobolev type. The solution to the
stochastic equation is a stochastic process that is not differentiable by Newton — Leibniz at
any point. Therefore, we use the derivative of the stochastic process in the sense of Nelson
— Gliklikh. The question of stability and instability of solutions to the stochastic Dzekzer
equation is solved in terms of stable and unstable invariant spaces. To solve the stabilization
problem, we consider the stochastic equation of the Sobolev type as a system of three
equations: one singular and two regular, defined on stable and unstable invariant spaces.
With the help of a feedback loop, the problem of stabilizing unstable solutions is solved. A
numerical experiment has been carried out. Graphs of the solution before stabilization and
after stabilization are given.
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Introduction

Groundwater is understood as groundwater with a free surface that accumulates on the
first waterproof layer of rock from the surface of the earth (a water barrier). Let’s consider
a model of a free surface when a liquid moves in a porous soil. The Dzekzer equation

(A — Ay = alu — BA%u, (1)

where o, f € Ry u A € R, describes the shape of this surface [1]. Here the parameters
a, [, A characterize the environment. From the point of view of a deterministic approach,
the solvability of the initial boundary value problem for the equation (1) was studied in
[2], the existence of exponential dichotomies of solutions to the equation (1) is shown in
[3].

In this article we will consider the equation (1) from the point of view of the stochastic
approach. For this purpose, in suitable stochastic function spaces, we will consider equation
(1) as a linear stochastic equation of Sobolev type

L 1= M, (2)
where 77 denotes the Nelson — Gliklikh derivative [4] of the stochastic process n = n(t). The

study of the existence of solutions of the stochastic equation (2) with a relatively bounded
operator was started in [5]. In [6] and [7] it is shown the existence of solutions of a linear
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equation of Sobolev type in the relatively sectorial case and in the relatively radial case.
In [8] studied high-order Sobolev equations, in [9] considered the initial-finite problem
for the equation (2). In [10] studied the stability of the equation (2), works [11] — [12]
are devoted to finding stable and unstable numerical solutions of non-classical stochastic
equations that can be written in the form (2). In [13] the stabilization problem for a
stochastic linear Sobolev equation with a relatively sectorial operator is considered for the
first time.

The purpose of this article is to solve the problem of stabilization of the stochastic
Dzekzer equation. For this, we consider the equation (1) as an equation (2) with a relatively
sectorial operator. The existence of solutions to the Cauchy problem and the Showalter —
Sidorov problem of the stochastic equation (1) is shown in [6]. The work consists of two
paragraphs in addition to the introductory part. In the first paragraph, sufficient conditions
for the existence of stable and unstable invariant spaces of the stochastic equation (1). The
second paragraph is devoted to the solution of the problem of stabilization of unstable
solutions of the stochastic Dzekzer equation based on the feedback principle. Here we
present graphs of solutions of the stochastic equation (1) before stabilization and after
stabilization.

1. Invariant Spaces of the Stochastic Dzekzer Equation
Let D € R™ be a bounded region, and its boundary 0D € C. Define the spaces i
and §:
U={ue W, ulx)=0, (z) €D}, = Ly(D).
Let {1} ({¢}) be the eigenfunctions of the Laplace operator A orthonormalized relative
scalar product in 4 (§), the spectrum o(A) = {v}, the sequence K = {\;} C R

is such that > A2 < oo. Let denote {&} C La ({¢x} C La) is a sequence of
k=1

uniformly bounded random variables with zero expectation and finite variance. Construct
a random K-variable & = > M\&ppr (C =5 )\kazﬁk) . The spaces UgLy (FkLy) are
k=1 k=1

the replenishment of the linear envelope of random K-values by the norm ||¢||%, r, =

S 06 (Ielhan = 35 DG )
Suppose that at the initial moment of time the distribution of the main hydrodynamic

elements in the flow can be considered in the form:
n0) =m0, 0= M&ir- (3)
k=1

To describe the free surface system of the filtering fluid in porous soil, we will consider
the stochastic Dzekzer equation. The operators L, M : UgL, — FkL, are given by the
formulas L = A — A, M = oA — A% Then the stochastic equation (1) can be viewed in
the form (2).

Lemma 1. [6] Let o, B, A € R\ {0}, then
(i) operators L, M : UxLy — FxLy — linear and continuous operators;
(i1) operator M is strongly (L, 0)-sectorial.

4 Journal of Computational and Engineering Mathematics



COMPUTATIONAL MATHEMATICS

Theorem 1. [6] Let a, 3,A € R\ {0, 3}, then there exists a solution n=n(t) to Cauchy
problem (8) for equation (2), which has the form

o0 o 2 oo
()=’ [e:rp (%t) <Z A€l < P P1 >0 w;)] .
=1 k=1

Definition 1. A subspace I C UkLy is called an invariant equation space (2), if for any
no € I the solution to problem (2), (3) n € CHR;I).

Definition 2. An invariant subspace I°® C P is called a stable (unstable) invariant
space of equation (2), if there exist such constants N € R, and v, € R, , that

10 o < Nae () for, for 82t 2 ),

where n*® = ps® (t) € I*W for all t € R,. If the phase space splits into a direct sum
P =T1°® 1" then the solutions n = n(t) of equation (2) have an exponential dichotomy.

6k
Let o, §>0and A < 0. Let \ # % or hy # k—p. Then the relative spectrum o*(M) =
f
ol (M) ok (M), where

alL(M):{w:/\>uk}, UTL(M):{W:)\<V;€}.

A — 1473 A — Vi
Consider  the spaces I° = {neUkLy: (o) =0, vy > A}, I¢ =
neUkLy: (o) =0, yy<A}. If A > v, then o¥(M) = oF(M) and there

exists only a stable invariant space.

Theorem 2. Let A€ R_, o, B € R, and )\ # % Then

(1) If X < vy, then there exist an infinite-dimensional stable invariant space I° and a
finite-dimensional unstable invariant space I of equation (2).

(11) If X > vy, then the phase space of equation (2) coincides with the stable invariant
space I°.

Let a, 8, A > 0. Then a — 1,8 > 0, A — v, > 0 and the relative spectrum

oL (M) = {w < 0}.

/\—Vk;

Theorem 3. Let o, 5, A € Ry, then the stable invariant space I° coincides with the
phase space Ux Ly of equation (2).

2. Stabilization Problem

Let , 8 > 0 and A < v;. Then oZ(M) — bounded set, by I, denote the contour
bounding ol (M) and lying lies in the left half-plane of the complex plane. The part
of the spectrum o%(M) = o%(M) \ ok(M) lies in the sector bounded by the contour

Iy ={peC:Reu <0, |argu| € (7/2,7)}. By virtue of the theorem 2 the space I° is a
stable invariant space, and the space I* is an unstable invariant space.
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The stochastic equation (2) will be considered as a reduced system

Hn’= 1", (4)
L, 778: Msnsa (5>
L, 77u= Munua (6>

which will be called the Dzekzer system. Here, by M, (Ls) u M, (L,) denote the
contractions of M (L) to I* and I*. The operator = M, 'Ly, where M, (Ly) — the
contractions of M (L) on the space UkLsy. The space UkLs has the form
{0}7 Vg 7é )‘7
n € UkLy:n= > Ne&epor, v = .
k=1

U(I)<L2 -

AR
BT
A
I
"""""""'
M'
H
{

DN

Fig. 1. Plots of the solution before stabilization and after stabilization in section z = 1

There exists a solving semigroup of the equation (5) U} = 5= [(uLs — M) Lye"dp

%
ry
and the solving group of equation (6) Uf = ;- [(uL, — M,) ' Lye*du. Due to the closed
Iy

spectrum, there are constants o, 8 > 0, such that Rec(M) > B and Resl (M) < —a.
Then
U7l c(uxra) < Ce™, U | cugrs) < Ce™, t € Ry (7)

The operator M is strongly (L,0)-sectorial, then the solution n° = 7°(¢) of equation
(4) is a zero random variable at ¢ € R,. Due to (7) for solving n® = n*(t) of equation (5)
it is satisfied tiifrnoo In°(t)||ukrL, = 0, for solving n* = n*(t) of equation (5) is satisfied by
i {7 (), = +oo.

Therefore, consider the following stabilization problem. Need to find a random process
X, such that for the solution n* = n*(t) of equation

L, n"= M,n" + x (8)
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executed
tLieroo [7“(t) vk, = 0. (©)
The random process y will be looked up in the form x = Bn". Let B = —(¢ + m)],

m = max{u € oX(M)}, e > 0. Then
I

(a — v

be(M, + B) =
o ( u+ ) { /\—Vk;

—<s+m><—e},

therefore, to solve n" = n"(t) of equation (8), (9) is satisfied.

For the numerical experiment, assume A = —5, a = 1, = 0.2, choose the square as
the area D [0, 7] x [0, 7]. With & = —0.68198, & = 0.88769, & = —0.73045, &, = 0.86707
in Figure 1 are plots of the solution before stabilization (red) and after stabilization (blue)
in section x = 1.

3. Conclusion

In the following we plan to consider the stabilization problem for semilinear stochastic
equations of Sobolev type in the case of a relatively sectorial operator [14].
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CTABUJIN3AIINA PEIIIEHNN CTOXACTUYECKOI'O
YPABHEHUA JA3EKIIEPA

E. JI. Axmadees, O. I Kumaesa

B pa6ore paccmarpuBaercs croxacTudeckoe ypapaenue J[3ekiepa, KOTOpOe OMUChIBAET
9BOJIIONIAU CBOOOTHOMN TIOBEPXHOCTH (DPUIIBTPYIOMEiics Kuakoctu. st u3ydenus ycroiran-
BOCTHU U HEYCTOIYMBOCTU PEIICHUIl U CTAOUIM3AINYA HEYCTONYMBLIX PEIICHUN JJAHHOE YPaB-
HEHHE B HOAXOJSAIMNX (PYyHKIIMOHAIBHO-CTOXACTUIECKUX ITPOCTPAHCTBAX PACCMATPUBAETCS
B BUJIE JIMHEHHOI'O CTOXACTUYECKOTO yPaBHEHUsI CODOJIEBCKOrO THIA. PellenneM croxacTu-
YECKOTO YPaBHEHUs SBJISETCS CTOXACTUIECKUI POIece, KOTOPbIil He nuddepeHmpyeM mo
Herorony — Jleitbnumy au B oguoit Touke. [loaToMy MBI HCIIOIB3yeM IPOU3IBOIHYIO CTOXACTH-
“ecKoro rporecca B cMmbiciie Heibcona — Iimukimxa. Borpoc 06 ycroitanBocTs u HeycToWIn-
BOCTH DEIIEHNI CTOXaCTUYIECKOro ypaBHeHus JI3eKkiepa penaercs B TEPMUHAX YCTORIHBOTO
U HEYCTOWYNBOTO MHBAPUAHTHBIX IIPOCTPAHCTB. [lJIst perenus 3a/1a4u cTabuIn3aIin CToXa-
CTUYECKOE ypaBHEeHre COO0JIEBCKOTO THITA PACCMATPUBAEM B BUJIE CHCTEMBI TPEX yPaBHEHMIA:
OJTHOTO CHUHTYJISIPHOTO W JIBYX PEryJIsSPHBIX, ONPEEJIEHHBIX Ha YCTONIMBOM M HEYCTOWYIH-
BOM MHBAPUAHTHBIX TpocTpancTBax. C MOMOIIBIO KOHTYpa 00paTHOI CBSA3U PelleHa 3a/1a9a
crTabmm3anun HeycToiunBbix pemenuil. [Iposenen unciennbiii skcrepument. [IpuBeneHsr
rpaduKN pelieHns 10 CTabUIN3AINN U T10C/Ie CTabUIN3aIIH.

Karouesvie caosa: ypasrenus coboresckozo muna; cmoxacmuseckoe ypasruenue Jzex-

UePa; UHBAPUGHIMHBLE NPOCMPAHCMEA, 360440 CMAOUAUSAUUL.
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