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Linear functional equations on an arbitrary piecewise smooth curve are considered.
Such equations are studied in connection with the theory of singular integral equations,
which are a mathematical tool in the study of mathematical models of elasticity theory
in which the conjugation conditions contain a boundary shift. Such equations also arise
in the mathematical modeling of the transfer of charged particles and ionized radiation.
The shift function is assumed to act cyclically on a set of simple curves forming a given
curve, with only the ends of simple curves being periodic points. The aim of the work is to
find the conditions for the existence and cardinality of a set of continuous solutions to such
equations in the classes of Helder functions and primitive Lebesgue integrable functions with
coeflicients and the right side of the equation from the same classes. The solutions obtained
have the form of convergent series and can be calculated with any degree of accuracy. The
method of operation consists in reducing this equation to an equation of a special type in
which all periodic points are fixed, which allows you to use the results for the case of a
simple smooth curve.

Keywords: linear functional equations from one variable; classes of primitive Lebesque
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Inroduction

The theory of boundary value problems for analytical functions with a boundary
condition containing a shift function [1-3| can be interpreted in terms of the theory of
singular integral equations “with a shift”. In such equations, the kernels of integrals are
themselves integrals with a Cauchy kernel with two variable limits dependent on each other
[4, 5]. Let’s denote this dependence «. In general, these equations are given on arbitrary
piecewise smooth curves on the complex plane in the sense of work [6]. The study of such
equations necessarily leads to the consideration of purely functional linear equations (LFE)
of the form:

(Ey () (@) =¥ (a(t)) =g (D) v (1) =h (1), (1)

defined on piecewise smooth curves of the complex plane.In addition to the issues related
to the existence, uniqueness, and number (power of the set) of solutions to equation (1),
it is necessary to investigate, as can be seen from [4,5], the operator (£} (w))_1 from the
point of view of its invariance with respect to classes of Helder and Lebesgue functions,
usually used in the study of singular integral equations, and classes of primitive ones from

them. These classes include classes of Helder functions: H,, 0 < p <1; H = . U<1 Hy,;
<ps

classes of Lebesgue functions: L,,1 <p < oo; L = ) U L, as well as classes of primitive
<p<oo
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from Lebesgue functions A,,p > 1 and flp = |J A,. The latter play an important role in
q<p
the study of the above-mentioned equations with generalized logarithmic kernels, more

precisely, equations whose kernels are Cauchy-type integrals with two related variable
limits. In general, the operator (F, (1))~ changes the parameters of the specified classes
of functions, so it is important to find estimates of these parameters for solutions of (1).
In the case of two fixed points of the shift function located at the ends of the curves these
questions for (1) on simple smooth open curves were considered in [5, 7-9]. A more general
situation where there are a finite number of periodic points on a piecewise smooth curve was
studied in [10]. In many publications devoted to equation (1) and its generalizations, the
equations were given on a real straight line or its semi-open segment, and the solutions were
mainly in classes of continuous functions [11-18| or some of their subclasses. In [17, 18], the
function a had a finite order with respect to the superposition. Such LFE find applications
in mathematical modeling of radiation protection optimization methods [18, 19].

When equation (1) is studied in the general case, on an arbitrary piecewise smooth
curve, it is necessary to consider the situation when the function o determines some
permutation at the ends of simple arcs (these ends are not necessarily point fixed relative
to «). Then a certain degree of mapping acts on each simple arc as an automorphism,
but not identical, as in [17, 18], but having infinite order. In [10], (1) was studied in
this situation when the mapping « generates a cyclic group on a set of periodic points.
In addition, in [10] the case was considered when on each simple curve the solution be
continuous at one of the ends. As noted in [5, 7-9], a simple curve containing one of the
ends and not containing the other: [a;b) or (a; b],is the natural domain for setting (1).Then
a continuous continuation of the solution at the appropriate end is possible. The existence
of a continuous solution at all ends (in the case of a simple open curve on two) requires
additional constraints on the solution and, in some cases, leads to the absence of such
a solution. This is described in detail in [9] for the case of a simple curve and two fixed
points at its ends. The aim of the work is to transfer the results of [9] to the case of a
piecewise smooth curve considered in [10].

1. Notation and Assumptions

The designations and assumptions are given in detail in [10]. The main ones are here

for ease of reading. Let I' = (J I';, T'; = [a;;b;], 7 = 1,n is a simple open smooth arc.
j=1

Denote by 12 a curve I' without ends a;;b; of arcs I';; by I'* a curve I" without ends bj;
by I'* a curve I' without ends a;. If M is an arbitrary class of functions defined on the
curve I, ¢1,...,c, € T, then let h € M (¢,%,...,¢,°) if h € M and h(c) = 0, i = 1;s.
We denote the degree of the invertible defined on I" mapping o« = «/(t), t € T' by the
subscript ag (1) = t, a1 (t) = a(t), a, (t) = a(w,—1(t)), a_1 (1) is an inverse mapping
to a, a_, (t) = a_1 (@_ps1 (1)), n = 1,00. Note a,, (a—p, (1)) = a_y, (o (1)) = ap (1) = t.
Let’s assume that o has the following properties.

1) Narrowing to map the arc I';, j = 1,n to a certain arc ['4(;), continuously, mutually
unambiguously and preserves orientation. The last mean the condition: a(a;) = aq(j). The
mapping of numbers j — &(j) is a substitution & on the set 1, n.

2) Mapping « has no other periodic points except the ends a;, b;, j € 1,n.
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Thus, a acts on Io“mutually unambiguous and mutually continuous. Condition 2) does
not limit generality, since it is always possible to divide curves I'; into parts by periodic
internal points and their orbits. These parts are assumed to be those simple curves that
form the entire curve I.

J)Vtel Jo/(t) #0and o/ € Hyon T, 6 € (0; 1].

Let be {Ny, ..., N,,,} is the splitting of the set into the orbits of the substitution &
(in other terminology, into independent cycles of this substitution). Let &;, j = 1,m be
a narrowing & on Nj;, that is, an independent substitution cycle & acting on the orbit

Nj. Let be p; is the order of this cycle (obviously " p; =n). Consider k& € N;. Note
j=1
that the mapping a;,, translates the arc I'y to itself, and satisfies properties 1-3 of 5,
7-9| (properties 1-3 of these works are the same properties 1-3 listed above provided that
n=1).
We will assume that for each specified mapping o, property 4 of the work [10] is also
fulfilled. This assumption is equivalent to a condition:

yvieTm I fo'(@)|# 1. I o’ ()] #1

keEN;
As in [5, 7-10|, we will assume that the letters a; and b denote, respectively, the
attracting and pushing away fixed points of the maps o, (k € N;). Note that the attracting
fixed points are translated into each other by mapping a. The same applies to pushing
away fixed points. In [10] it is shown that condition 4 can be written as:
NHVjelm ] | (an) <1, ] | (b)| > 1.

keN; keN;

2. Supporting Statements

We will consider the curve I'* and assume that & is a cyclic substitution on the
set{l n} (j)=7+1, j=1,n—1, &(n) =1, that is, we assume that m = 1 there
is only one orblt where « is acting on FJ, j = 1,n. The key role in the study of equation
(1) is played by the equation:

w(@0) - 3060 =h ), @)
7(6) =L (e 1)

B 0) = b1 () + 3 Ao 0 H k), G0 =) )

The relationship of these equations is investigated in [10], but only for solutions ¢» € C1%%3)
Vj € 1, n. However, the case Vj € 1,n ¢ € Clab] gives significantly different results (see
Theorems 4-7 below). We will assume that

g(aj) 7é 0, y=1Ln. (4)

Theorem 1. [10, Lemmas 1 and 2| Equation (2) is a consequence of (1). Let g € Clsiti)
forvVijeln. If

H g (a;)] > 1, Hg(@j) # 1, (5)

2024, vol. 11, no. 2 13



V. L. Dilman, T. V. Karpeta

then equations (1) and (2), (3) are equivalent in class C*".
Theorem 2. [10, Lemma 3] Let g € Cl%%5) forVj € 1 n. If

[Lo()=1. )

and h(a;) = 0, j = 1,n, then equations (1) and (2) are equivalent in class
C™ (a2, jeTn).

Theorem 3. [10, Theorem 1] Let g € Cl%3) forVj € 1, n. If

[Llo ()l <1, @)

then equations (1) and (2) are equivalent in class C'".

There are dual statements for theorems 1-3. They will be obtained if we replace [a;; b;)
with (a;;b;] in the formulations of these theorems, and replace conditions (5) — (7) with
conditions, respectively

n n n

[Tsedl<t, [lo)#1 [Tot) =1 H\g(bj)!>1-

J=1 J=1 J=1

Theorems 1-3 and the dualities to them allow us to reduce the study of equation (1) to
the study of equation (2), which splits into several equations, each of which is given on
a simple curve I'; = [a;b;], j = 1,n, that is, instead of studying (1) on an arbitrary
piecewise smooth curve, to study (2) on a simple smooth curve.

3. Theorems of Existence and Number of Solutions for Cyclic
Substitution

In all the theorems formulated below, it is assumed & (b;) = 0, j = 1,p. As shown
in [9], this condition does not reduce the generality of statements about equation (1)
solutions. In applications to singular integral equations desired function ¢ associated with
1 by the relation
by

w@wa/vamtemﬁm,j:Lp

t

If by, = agy1, then there will be two values at this point (one of which is zero). This only
means that function ¢ (t) = —¢/(t) will not be defined at the “junction” point. We will
assume the presence of two or more different values of the desired function at the point
of “junction” of two or more simple curves, calling such solutions continuous on I'. If we
want to find solutions that are continuous in the usual sense, then we need constraints on
(1) at the "nodes", that is, at the "junction" points of the ends of simple curves forming
a curve.

Lemma 1. Let I'y = [cg;di], Ty = [a;d)] — simple curves included in T, and dy = ¢.
Then, for the continuity of the solution at this point on the curve, it is necessary and
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sufficient that

hidy) _  h(a)
L=g(ds) 1=g(a)
In order for 1 (b;) = 0, it is necessary and sufficient that h (b;) = 0, where b; is the
periodic point of function a.

Proof. The periodic points of function « are the fixed points of function «,,, so the second
statement is obvious. Substituting fixed points dj, and ¢; of function «,, into equation (2),
equivalent to (1), we obtain

hidy) _ h(a)
1—g(de) 1-g(a)

This implies continuity of the solution in node dy = ¢;.

(0 (dk> =

= (a).

o (I
Let’s introduce the notation. Let’s fix an arbitrary point ¢ € I". Since by convention

this point is non-periodic, the same is true for ay (c), therefore Vk aypip (¢) # ag (¢).
Let’s say for any integer &k Ij, (¢) = [ag4n (¢); oy (¢)]. Note I, (¢) C I'; & k = j (modn).
Denote by C.,p, the class of functions fcontinuous on Iy (¢) = [oy, (¢); ¢] and satistying
the condition:

flap(e) =g(e) fe)=h(c). (8)
Let vy € Ce g4, but otherwise it is arbitrary. If K is an arbitrary class of functions on
Iy (c), then we assume by definition K. 4, = C, 45 N K. We will use the icon 3! to indicate

the existence of a single solution to equation (1) in the specified class. Recall that the
functions g, h, & are defined in (3). Condition (4) is assumed in all theorems.

Theorem 4. Let h,g e H,, g(t) #0, tel'. If [T|g(a;)| > 1, TI|g(b;)| > 1, then 3!
=1 =1
solution of (1) on CT, defined by formulas:

_ hiey)

w(aj) 1_9(61]')7 w(bj) _07
77/)(75)——2 kh(&k(t)) ) tEF], j:1,n (9)
= fi g6 )

IfYjeTin u< L0g| s,y 19 (b5)] then v € aE.
Ifg,h € AVII;, p>1,Vjel;n ijl < 10g|07(bj)‘ |G (b;)|, then ¢ € Avg

Remark 1. Vj € I;n [] g(ax) = g (a;), therefore, the inequalities in the condition of
k=1

the theorem can be written, for example, in the form: |G (a1)| > 1, |g(by)| > 1.

Theorem 5. (Dual to Theorem 4). Let h,g € H,, g(t) #0, t € I. If [] |g(a;)| < 1,
j=1

[T lg (b;)] <1, then 3! solution of (1) on C*, defined by ¢ (a;) = 0; v (b;) = i)
j=1

1-g(b;)’
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1

Y (t)=h(G_i(t)+ > h(a

k=9
IfVieln u< 10%\02/(aj)| g (a;)], then ¢ € HE
Ifg,he A, p>1, andVj € I;n ijl < log’&,(aj)’ g (aj)|, then ¢ € AL

H:||

g(d_j (1), tely, j=1n. (10)

Proof of theorem /. From Theorems 2 and 4 of [5] it follows that Vj € 1,n, provided
|G (a;)] > 1 on [a;;b;)3! solution ¢*, and it has the form (9). Let € (a;;b;) be any point.
Then, for ¢*, as for any solution of equation (1) on Ij(c), condition (8) is satisfied.
Therefore, it follows from the proof of Theorem 2 [7] that 3! solution ¢** (1) on (a;;bj],
whose narrowing on I (¢) coincides with ¢*. Then ¢* and ¢** are the same. Therefore,
function
Y, t € faj;by),
™, t € (aj;bj]
is the only continuous solution (1) for ¢t € T';, j = 1,p. The affiliation of this solution to

the functional classes indicated in the formulation of the theorem directly follows from the
results of |5, 7].

Y=

(I
Remark 2. The above reasoning actually repeats the proof of Theorem 1 of [9] with
replacement I' = [a;b] by I'; = [a;;b;], j = 1, n. A similar situation holds for the theorems
formulated below, so their proofs are not given.

Theorem 6. Let h,ge H,, g(t)#0, tel. If []|g(a;)| <1, []lg(b;)] >1, then (1)
s j=1

has a continuum of linearly independent solutions in the class O, which have the form:

— h (a;)
Vieln ¢(a;) =4 (a) (b;) =0;
T 9650 00) 0 G () + 5 e () TT 50610 ()2 € 1100,
_ G (@1 (8) Yo (@1 (1) +h (@1 ()t € L (0),
w(t>_ . ¢0 (t) it e Iy (C) ) (11>
157" (- () Vo @ () = 35 G (0) T 57 @0y ()1 € L ),

where n € N and function ¢y € C. 4 is arbitrary.
IfVjel,npu<min {log|&,(aj)| ACHIE log|&,(b )| 19 g (b )|} and )y € H L then ) € ]T[};
If g, h € AF, p>1landVje€ln ijl < min log|a (a; ||g (aj)|; log|&,(bj)‘ \g(bj)|},
Yo € Ay, po > 1, then ¢ € Ag* for p* = min {p;po;p1jip2;}, where py; =

-1 5 =l -1
(1~ logjq, jlit a)l)  if rmr > | ()], and poy = (1=Toga,( 15 01)  if
3] < | (b))

otherwise p; = py = +00.
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Remark 3. Condition (8) is necessary in order for function ¢y € C.45 to have a
continuous continuation in (11) (according to formula (11)). Theorem 6 does not have
a dual one — if the signs in the inequalities of the condition of Theorem 6 are reversed,
equation (1) turns out to be generally insoluble. The condition for the existence of a
solution under such conditions for a simple curve is formulated [9, Theorem 5.

n n p
Theorem 7. Leth,g € H,, g(t) #0, t € I, g (a;)| =1, TT g(az) #1, I |g (b)) > 1.
j=1 j=1 j=1
Then 3! solution of (1) in CT, defined by the formulas:

I1=g(am) 1—=g(m)

v () = h(a1) 1 S (1 =g (a)) h(a @) —h(a) A =g (a(@)))

Ifvjelnpu< log’&,(bj)‘ |G (b))|, then ¢ € H};l, [y = % (numberd) is entered in
condinion 3 of shift function o definition).
J o _ ~ 140
If g,h € Ag, p>1,andVj€eEln % < log‘oz/(bj” |G (b;)|, then ¢ € A]l;l, P = p(1+0)

p+0 -

p
Theorem 8. (Dual to Theorem 6). Let h,g € H,, g(t) # 0, t € I', [[g(a;)| < 1,
j=1

IT19 ()| =111 g(b;) #1. Then 3! solution of (1) in C*, defined by the formulas:
1 j=1

~ h(b) (1= g (b)) b (G (1) = B (by) (1 — g (éu (1))
YOS T T T & & i@ ) el

If¥j € T o < 10g| [ ()], then ¥ € Hy,, i = 5.

If g,h € AF’ p>1,andVjel ntt < log‘a,(a )| |G (a;)|, then ¢ cA >p1 ;f:).

n P
Theorem 9. Let h,g € H,, g(t) # 0, t € I'. let [[ g(a;) =1,1]19(b;)| > 1. Then
j=1 =1

= ji
equation (1) is solvable in class C* if and only if Vj € 1,n h(a;) = 0. In this case, the
general solution is a one-parameter family of functions of the form:

=~
¢(t):— Z - terl. (12)
I g(ax(t) k=0 II g(oq( ))
k=0 fur
IfVjiel,npu< log‘&,(aj)‘ |G (a;)|, then ¢ € H};.
If g, h € flg, p>1,andVje€l,n ijl < log‘oz/(aj)’ |G (a;)|, then ¢ € Z;I;
Remark 4. It follows from (12) ¢ (b;) =0,V j € 1,n.

p
Theorem 10. Let h,g € H,, g(t) # 0, t € I'. Let][] |g(a;)] < 1, Hg( ;) =
j=1

Then equation (1) is solvable in class C* if and only if Vj € 1,n h(b;) = 0. In this
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case, the general solution is a one-parameter family of functions of the form: i (t) =

¢ ﬁlg(a_j (8) +h(a- (1) = ih(a_j (t))ilig(@—k (1), te€ (a;b].

j
IfVjelnu< log’&,(bj)‘ |G (b;)|, then ¢ € H,.

Ifg,h e A

P’

p>1,andVjeTn =t < l0g) 50, 19 (b)), then ¢ € AL

Remark 5. Theorems 4-10 consider all options except the conditions:
[Tla) =1, J[lae) <t (14)

In this case, there is a single continuous solytion on I'* and a single continuous solution
on I'’, which in general do not coincide on T'. Therefore, under conditions (14), there is

generally no continuous solution.

Conclusions

Analytical expressions for continuous solutions of equation (1) on an arbitrary
piecewise smooth curve are obtained. These solutions have the form of converging series
or are given by iterating over an infinite number of cases. It is shown that the set of

continuous solutions (1) depends on the values [] g(a;) and [] g (b;) compared to the
=1 j=1

unit and can be empty, singleton, be a one-parameter family or contain an infinite set of
linearly independent solutions. The solutions still belong to classes H, and classes A4, that
functions ¢ (¢) and h (t) belong to, but, in general, with other parameters.
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YK 517.965 . DOL 10.14529/jcem240202
HEITPEPBIBHBIE PEINTEHN Y JIMHENMHBIX

OYHKIIMOHAJIBHBIX YPABHEHUN

HA KYCOUYHO-TJIAJIKUX KPUBBIX

B MATEMATUYECKUX MOJEIAX KPAEBBIX 3ATAY
CO C/ABUTOM

B. JI. /luabman, T. B. Kapnema

PaccmarpuBatorcss  simnelinble  DyHKIMOHAJIBHBIE ypPaBHEHUs Ha  ITPOU3BOJILHON
KyCOYHO-TJIaJIKOI KpuBoil. Takue ypaBHEHUSI U3yIAOTCS B CBSI3U C T€OPHUEN CHHIYJISIPHBIX
UHTErpaJjibHbIX YPaBHEHUI KAK MAaTEMAaTHIECKOTO MHCTPYMEHTA IIPU MCCJIEI0OBAHII MaTeMar-
THYIECKUX MO/IeJIEil TEOPUN YIPYTOCTH, B KOTOPBIX YCJIOBUS COMPSKEHUs COAEPKAT CIBUI IO
rpanunne. Takue ypaBHEeHUS BO3HUKAIOT TAKKE IIPU MATEMATHYIECKOM MOJEIMPOBAHUU IIPO-
[IECCOB IIEPEHOCA 3aPSKEHHBIX YACTUIl U MOHU3UPOBAHHLIX n3iydenuit. OyHKIusg caBura,
10 IMIPE/IITOJIOYKEHNIO, JIeCTBYeT IMUK/IMIECKH Ha MHOYKECTBE IIPOCTHIX KPHUBBIX, 00pa3yio-
X 3aJaHHyI0 KpuByo. Llesibio paboThl sBJIsSIeTCsS HAXOXK/IEHUE YCJIOBUII CYIIECTBOBAHUSI
U MOIIHOCTU MHOXKECTBa HeIIPEPBIBHBIX PEIeHril TAKUX YpPaBHEHU B KJiaccax (DyHKIIMIA
lenbepa u mepBoobpa3HbIX OT MHTErpupyeMbx 1o Jlebery dyukimii ¢ koaddurnmenramn
U [IPaBOil YaCThIO yPABHEHHUA U3 TeX Ke KJIaccoB. llojrydennbie perenns nMeoT BUJ, CXO-
JISATIUXCST PSIZIOB U MOT'YT OBITH BBIYKCJIEHBI C JIFO0OI cTereHbo TouHocTr. MeTo paboThl
3aKJIF0YAeTCsI B CBEJIEHUHU JIAHHOIO YPaBHEHUsl K YPaBHEHUIO CIIEIUAJIBLHOTO BHUJA, B KOTO-
POM BCe IIEPUOIUIECKIE TOUKHU ABJISTFOTCS HEIIOIBUXKHBIME, ITO II03BOJISIET BOCIIOJIb30BATHC ST
pe3yJibTaTaMu JJid Caydasd HPOCTOI INIaJKON KPUBOIL.

Karouesvie cao6a: cumeysaprvie UHMEPANDHBIE YPABHEHUA CO COBULOM; AUHETNDLE
Pynryuonasvrsle Yypasrerus om 00noll nepemennotl; kaacco, dyrxuul Ieavdepa; kaacco

nepeoobpasHLLT 0m urmezpupyemur no Jlebezy dyrruud.
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