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In this paper, numerical solution of the screened Poisson equation with the Dirichlet
boundary condition in two-dimensional and three-dimensional domains is proposed. The
continuation of the boundary value problems is carried out, and then they are approximated
by the finite element method. In the developed method of iterative extensions, solutions
to extended problems after approximation are iteratively approximated by solutions of the
proposed extended problems. This method has optimal asymptotics in terms of the number
of operations.
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Introduction

An iterative method of fictitious domains was proposed for the first time in the
work [1] with optimal asymptotics in terms of the number of operations. This method
approximated solution of the second-order elliptic boundary value problem only with the
Neumann boundary condition. For elliptic boundary value problems in domains with
complex geometry, under the Dirichlet boundary condition, numerical methods with
logarithmically optimal asymptotics are known, although theoretically there can also be
asymptotically optimal asymptotics, i.e. unimprovable asymptotics with respect to the
number of operations [2]. When developing numerical methods for solving these problems
in domains with complex geometry, they are reduced to problems in rectangular domains
for which asymptotically optimal marching methods are known [3]. A methodology of
fictitious components for solving second-order elliptic boundary value problems in the
presence of a Dirichlet boundary condition was proposed, studied and optimized in the
works [4, 5, 6], where they sought to obtain results with optimal asymptotics for elliptic
problems with the Neumann boundary condition. Numerical fictitious space iterative
method for solving the Dirichlet boundary value problem for a second-order elliptic
equation in a domain with complex geometry was proposed in [7], which has optimal
asymptotics in terms of computational costs. It can be noted that this method was not
further developed, for example, in works [8, 9, 10, 11| for fourth-order elliptic problems.

This work devotes to the development of a numerical method of iterative extensions for
an asymptotically optimal, theoretically and practically simple, universal application to
the approximate solution of elliptic boundary value problems with the obligatory presence
of the Dirichlet boundary condition using the example of screened Poisson equations.
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1. Screened Poisson Equation with Dirichlet Boundary Condition

The subject of research and development in this work will be the method of iterative
extensions for an approximated numerical solution of screened Poisson equations in
bounded domains under mixed boundary conditions and the mandatory presence of the
Dirichlet boundary condition:

. ot
u: — A+ ki = flg, G C R R, :O,a—uLY2 = 0. (1)
n

If boundary of domains consists of
O0G =3, s=7 U, 1Ny =0,

and functions f € Ly(Q), coefficients s € (0; +00), bounded domains G, outer normals n
to 0G are specified.
Let us present boundary value problems as linear functionals in the form of scalar
products
we H: (u,9)=F@®)VoeH, FeH, (2)

where the functions spaces are Sobolev spaces
= (G = {@ € WHG): o], = o},
if scalar products are considered
(i, 0) = K(0,0) = | (p0, + 0,0, + wi0)dG,

or
(i1, 5y = K (1, 7) = / (a0 + i1y Dy + 105 + KED)dG,
G

if functions f are specified, then linear functionals are considered
F(0) = (0,9) = /f@dG.
G

Let us consider these problems in variational form with the w = 1, and also introduce
fictitous homogeneous problems, when w = II

i, € Hy,: K, (i, ) = Fu(0,) Vo, € Hy, F, € H,,we {1,1I},G, C RER?,  (3)

if functions f; € Ly(Gy), then right sides of the problems are

Fw(i}w) = /.}Ewijdew vq}w S Hwa .]EH - 07
Guw

if Sobolev spaces are

Hw == Hw(Gw) = {’Dw S W21(Gw> 6w"yw,1 = 0}7
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where bounded domains G, with boundaries

aGw =Sy, S = Yw,1 U%u,% Yow,i m%u,j - @,i 7é j, i,j = 1727

and the scalar products are

K, (ty, 0,) = /(awxwa + YO,y + KwlinUy,)dG,,
G

or
K, (i, 0,) = /(ﬂwxf)wx + U YUY + U202 + Kuliyly,)dG,,
Guw
and coefficients £, € (0;+00). If w = 1, then k1 > 0,7, # 0 in these problems, and when

w = II, then k1 > 0 in fictitous problems.
Let us consider the continued problem in variational form

w € V: Ky(u, 1) + Ky(a, ) = Fy(I,0) Vo € V, (4)

where the solution of the continued problem (4) belongs to extended space of solutions,
which is the Sobolev space of the following form

V=V = {@ e Wy(I): 9|, = 0}.

We assume that the given and selected domains G, Gy satisfy the properties G UGy =
II, Gi NGy = 0, boundaries of domains IT are also the closures of unions of open, disjoint
parts

aH:ga s =7 U, ’Vimﬁ)/j:(ba 27&]7 27]:172

We believe that the intersections of the boundaries of the first and second domains will be
non-empty sets, being the closures of the intersections of the corresponding parts at the
boundaries of the corresponding domains, i.e.

0G1NIG =S,S =711 Nz # 0.

Subspaces of solutions of the continued problems will contain in the extended solution
spaces in the following form

‘V/l = ‘71(1_[) = {’lv)l c V: ’lv)lh‘[\Gl = O}

In the formulation of continued problems we use all possible arbitrary projection operators,
for example, but not necessarily, orthogonal projection operators from extended solution
spaces, necessarily onto all corresponding subspaces of solutions for the corresponding
continued problems

I: Ve Vi, Vi=imly, I, = I7.
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2. Method of Iterative Extensions

Let us consider the continued variational problems on finite subspaces, using
approximation of Sobolev spaces. In two-dimensional case, if

IT = (0;61) x (0;b2), v1 = {b1} x (0;b9) U (0;b1) x {ba},
Y2 = {0} x (03 b2) U (03 b1) x {0}, by, by € (0;+00).
We consider a grid with nodes in specified rectangular domain II
(i395) = ((i = 1,5)h1; (j = 1,5)ha),
hi =b/(m—1,5), hg=0by/(n—1,5), i1 =1,2,....m, j=1,2,...,n, m—2,n—2¢€N.
Let us consider grid functions on the set of nodes of the grid
vij=v(r5y;) €ER, 1=1,2,...om, j=1,2,....n, m—2,n—2€N.
We define the completion of introduced grid functions, using piecewise linear functions
V(x5 y) = oV (2)¢* (y), i=2,....m—1,j=2,....n—1,m—2n—2€N,

oV (x) = [2/i] ¢(x/hy — i+ 3,5) + d(x/hy — i+ 2,5),
™ (y) = 12/4] d(y/ho — j +3,5) + d(y/ha — j + 2,5),
t, € [0; 1],

P(t) = {Q—ta € [1;2],

0, t¢(0;2)

We equate to zero basis functions outside of rectangular domain II
U (r;y) =0,(z;y) ¢, i=2,....om—1,j=2,....n—1,m—-2n—-2€N.

Sets of linear combinations of the specified basis functions are finite-dimensional continuous
subspaces of the extended continuous solution spaces

m—1n—1
:{f): v”\lf”xy} cV.

1=2 j=2

<.

In three-dimensional case, when
II = (O, bl) X (0, bg) X (O, b3),

= {1} % (0:02) % (0305) U (0;by) x {bs} x (0:bs) U (0;b1) x (032) x {bs),
Y2 = {0} x (0;b2) x (0;03) U (0501) x {0} x (0363) U (0;b1) x (0;b2) x {0},
bl, bg, bg € (0, —|—OO)

Let us introduce grid with nodes in the domain of the rectangular parallelepiped II

(7595 2p) = ((1 — 1,5)h15 (j — 1,5)ha; (p — 1,5)h3),
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hl :bl/(m_175)7 hQZbQ/(n_175>7 h3:b3/(K_175>7
r=12....om, j=1,2,....n,p=1,2,.... K, m—2,n—2,K—-2¢&N.

Let us consider grid functions on the set of nodes of the grid
Vijp =0Ty %) ER, i =1,2,...,m, j=1,2,...,n,

m—2,n—2,K—-2¢cN.
We define the completion of introduced grid functions, using piecewise linear functions
VP (25 y;2) = ¢ (2)9™ (y)¢* (2),
r=12....om, j=1,2,....n,p=1,2,.... K, m—2,n—2, K —-2¢cN],
oV (z) = [2/i] p(x/hy — i+ 3,5) + d(x/hy — i+ 2,5),
0™ (y) = [2/5] &(y/h2 — j +3.5) + 6(y/ha — j +2,5),
¢*"(2) = [2/p] (2/hs — p+3,5) + d(y/ha — j + 2,5).

We equate to zero basis functions outside of the domain of the rectangular parallelepiped
IT

WP (s y;2) = 0, (z3y; 2) ¢ 11,
1=1,2,....m, j=1,2,....n,p=1,2,..., K, m—2,n—2, K —2 € N.

Sets of linear combinations of the specified basis functions are finite-dimensional continuous
subspaces of the extended continuous solution spaces

D 3D MR LUl N

Reduction of the introduced continued problems using the given approximation leads
to linear systems of algebraic equations, i.e. problems of the following matrix form

aeRY: Cu=7f, feR"Y. (5)

Now let us specify the choice of projection operators I, i.e. these operators set to zero the
coefficients of the basis functions whose supports do not contain in the closure of the first
domains. With such reduction of the introduced continued problems, they are obtained
in matrix form, if we assume that the extended matrices, and the right-hand sides of the
approximation satisfy the following equalities

(Cu, 7] = K1 (0, D) + Ku(a,0) Va, o e V, [f,7] = Fy(I,0) Vo € V,

[f, 0] = (f,0)hihy = fOhihy, T = (v1,0,...,08) € RN, N = (m—2)(n —2).

When we enumerate the coefficients of the basis functions, we distinguish them in three
blocks. In the first block, we include coefficients of the basis functions, whose supports
contain in the closure of the first domains. In the third block, we include coefficients of
the basis functions, whose supports contain in the closure of the second domains. In the
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second block, we include coefficients of the basis functions, that are not yet enumerated.
With this numbering, the resulting vectors have the following structure.

v = (@/17@/2753),7 u = (Ellvﬁluﬁl)lv ? = (?/176/76/),'

After the numbering we have matrices in the following form

Ky Kip 0
C=10 Kgp Ko
0 Ks Kss

As we consider this numbering, we also additionally define the matrices, using the
previously introduced scalar products

(K15, 7] = Ky(4,0), [Kyu,v] = Ku(4,0) Va,0 € V.

These matrices have the following form

Ky K2 0 0 0 0
Ki= |Kyan Ky 0|, K= |0 Ky Ko
0 0 0 0 Ks Kss

Let us introduce discrete subspaces corresponding to the continued subspaces of solutions
in vector form

V= {v = (U}, 75, 75) € RY: Ty = 0,73 = 6}.
Then, additionally, using these matrices, we define the following subspaces in vector form
Vy= {5 = (0}, 05, 05) € RN : K110y + Ky90p = 0, K3oUs + K3303 = 6}-
To find approximate solutions to the problem (5) we use the method of iterative

extensions. Let us introduce extended matrices, defined as the sum of the first and second
matrices multiplied by additionally parameters

B = Ky + 8K,
By Bis O K Ko 0O 0O 0 0
Byy Byy Bag| = Ko Ky 0 +5 10 Koo Kaz|,[ € (0;+00).
0 Bsy DBass 0 0 0 0 K3y Kss

Let us present condition on continuations of functions that will be sufficient to
construct a further convergent process in the method of iterative extensions

381 € (0;+00), By € [B1; +00): BBy, By] < [K1iUy, Ki1s] < B3| By, Bvy| YU, € Vo,

do € (0, —|—OO)3 I:KIEQ, Klﬁg] S &2[K1162’ KII@Q] VEQ € VQ.

The method of iterative extensions can be interpreted as a generalization of the
method of fictitious components when introducing additional non-unit parameters in the
definition of extended matrices, as well as when iterative parameters are selected using
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error minimization in a stronger norm than energy norm of the emerging problem, i.e. we
use minimum residual method instead of method of steepest descent.
7 cRY: B@" —u" 1) = —m_ (CT* — f), k €N, (6)
VHO € Vla 6 > o, Top = 17 Tk—1 — [Fkilaﬁkil]/[ﬁkiaﬁkil]a ke N\{1}7
where in the iterative process it is necessary to recalculate residuals, corrections and
equivalent residuals step by step
ol = oghl _F, @l = BiFL gl = 0wt ke N,

Let us introduce norms stronger than energy norms in emerging problems at each step
of the iterative process in the method of iterative extensions

17|l 3> = /| B?v,7] Yo € RY.

Theorem 1. In the developed method of iterative extensions (6), convergence estimations
18

[@" —ll g2 < el|a® — @l g2, € = 2(62/B1)(a/B)" 7, k€N

Similar results were obtained in particular, similar cases in works [12, 13].

Let us write down the implementation of the method of iterative extensions in the
form of an algorithm for an approximate solution of the emerged problems after the
approximation applied to them, and then their fictitious continuation. The choice of
iteration parameters is based on the method of minimal residuals.

1. Choose arbitrary initial approximations from the subspaces of solutions that
approximate the subspaces of solutions of continued problems, and unit initial
iteration parameter

Vﬂo € 71,7'0 = 1.

2. Calculate residual
?rl=Cu" ' —f, ke N
3. Find the norms for absolute errors
er1 =[P, ke N
4. Find corrections
wl Bt =7 ke N.
5. Find equivalent residuals
7t =Cw !, ke N\{1}.
6. Find optimal iterative parameters

Th 1 = [kaljﬁkfl]/[ﬁkfl’ﬁkfl]’ ke N\{l}.

7. Find new approximation

—k k—1

="' - 1w, keN.

8. Check the stop criterion of iterative processes based on predetermined estimates of
permissible relative errors

ex1 < eeg, k € N\{1}, e € (0;1).
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3. Computational Experiments

Example 1. We consider domains
G1 = (0;2.5) x (0;2.5)\[1.5;2.5) x [1.5;2.5),
Gy = (1.5;2.5) x (1.5;2.5), 11 = (0;2.5) x (0;2.5),

with boundaries

y.1 = {2.5} x (0;1.5) U (0;1.5) x {2.5} U {1.5} x (1.5;2.5) U (1.5;2.5) x {1.5},

7,2 = {0} x (0;2.5) U (0;2.5) x {0}, 11,1 = {2.5} x (1.5;2.5) U (1.5;2.5) x {2.5},

2 = {1.5} x (1.5;2.5) U (1.5;2.5) x {1.5},m = {2.5} x (0;2.5) U (0;2.5) x {2.5},
v2 = {0} x (0;2.5) U (0;2.5) x {0}.

We consider function with x; =1

f1 = ((392 — 384x)(64y> — 196y* 4 225) + (642> — 19622 + 225)(392 — 384y)),/184%+

+(642® — 1962 + 225)(64y° — 196> + 225) /1842,
i = (642° — 1962% + 225)(64y> — 1961 + 225) /1842,

Select e = 0.00001, n = 254, initial zero approximation, then in the method of iterative
extensions, the iterative process terminates at the second iteration. Fig. 1 shows the last

approximation and the solution.

Fig. 1. Solution and last approximation

max |ui,j — ?11'7]"

Value of the maximum error is < 0.00002.

max | ;|
Example 2. We consider domains

Gr = (0;2.5) x (0;2.5) x (0;2.5)\[1.5:2.5) x [1.5:2.5) x [1.5;2.5),

G = (1.5;2.5) x (1.5;2.5) x (1.5;2.5), IT = (0; 2.5) x (0;2.5) x (0;2.5).
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Boundaries consist of closures of parts:

Y11 = {2.5} x ((o; 2.5) x (0;2.5)\[1.5;2.5) x [L.5 2.5)>u

U ((o; 2.5) x {2.5} x (0; 2.5)) \ ([1.5; 2.5) x {2.5} x [1.5; 2.5))

U ((o; 2.5) x (0;2.5)\[1.5;2.5) x [L.5; 2.5)) x {2.5} U {1.5} x (1.5:2.5) x (1.5;2.5)U

U(1.5:2.5) x {1.5} x (1.5;2.5) U (1.5;2.5) x (1.5;2.5) x {1.5},

1.2 = {0} x (0;2.5) x (0;2.5) U (0;2.5) x {0} x (0;2.5) U (0;2.5) x (0;2.5) x {0},
vt = {2.5}x(1.5;2.5)x (1.5; 2.5)U(1.5; 2.5) x {2.5} x (1.5; 2.5)U(1.5; 2.5) x (1.5; 2.5) x { 2.5},
e = {1.5}x(1.5;2.5)x (1.5; 2.5)U(1.5; 2.5) x {1.5} x (1.5; 2.5)U(1.5; 2.5) x (1.5; 2.5) x { 1.5},

v = {2.5} x (0:2.5) x (0:2.5) U (0;2.5) x {2.5} x (0;2.5) U (0:2.5) x (0:2.5) x {2.5},

o = {0} x (0;2.5) x (0;2.5) U (0:2.5) x {0} x (0;2.5) U (0;2.5) x (0;2.5) x {0}.

We consider function with xk; =1
fi = ((392 — 384x)(64y> — 196y> + 225)(642° — 1962% + 225)+

+(642° — 19627 + 225)(392 — 384y)(642° — 19627 + 225)+
+(642° — 1962° + 225)(64y> — 196> + 225)(392 — 3842)) /225,
iy = (642% — 19622 + 225)(64y® — 196> + 225)(642° — 1962> + 225) /225",

Select e = 0.00001, n = 79, initial zero approximation, then in the method of iterative
extensions, the iterative process terminates at the second iteration. On Fig. 2 shown the
last approximation and the solution on projection of w; ;, with p = (4n —1)/5.

Fig. 2. Solution and last approximation

max [y ~ Uil g o2,

Value of the maximum error is -
max [, p|
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The proposed algorithm of iterative extensions include automation of control for

calculating optimal iterative parameters based on iterative processing of information before
stopping the iterative processes according to the given criterion, i.e. when performing
predefined error estimates. Error minimization in the method of iterative extensions
uses stronger norms than energy norms in emerging problems iteratively. The developed
method of iterative extensions has unimprovable asymptotics, i.e. optimal asymptotics
in terms of the number of required operations, and allows simple, efficient and universal
implementation in comparison with the fictitious space method [7].
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PEIIIEHUE SKPAHNPOBAHHBLIX YPABHEHUN
ITYACCOHA C YCJIOBUMEM JNPUXJIE METOJ10M
NTEPAIIMOHHBLIX PACIIINPEHUI

M. II. Epemuyx, A. JI. Ywaxos

[Ipemaraercs 4mciienHoOe pelrenne SKPAHUPOBAHHOTO ypaBHenus llyaccoma ¢ ycio-
BueM Jlupuxiie B AByMEPHBIX U TPEXMePHBIX 0OsacTsx. [IpomsBomurcs nmpomosikerne pe-
IIA€MBIX KPAEBLIX 3aJad, a 3aTeM UX AIPOKCHMAIMS METOJAOM KOHEYHBIX IJIEMEHTOB. B
pa3BUBaEMOM MeTOJle NTePAIlMOHHBIX PACIINPEHUIl pelleHusl IIPOJOJIKEHHBIX 3aJad IOCTe
AIIPOKCUMAIINYA UTEPAIMOHHO MPUOJIMKAIOTCS PEIIEHUSIMU [IPEJIAraeMbIX PACIIAPEHHBIX
3aJ1a9. DTOT METOJI JJisi PEIIeHUs UCXOJHBIX 33/1a9 UMeeT OINTUMAJIbHYI0 ACUMIITOTHKY 110
KOJIMYECTBY OIlepalvii.

Karoueswie caosa: axpanuposanmoe ypasrenue Iyaccona; memod umepayuonsiy pac-
wuperul.
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