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The continuous models are considered in the most works on optimal advertising.

Articles on the discrete-time models are more rare because in this case it is di�cult to

obtain an explicit solution. In this paper a new discrete model of optimal advertising for

a monopolist-seller of a new goods is proposed. In the model, the dynamics is given by a

nonlinear di�erence equation. The non-linearity depends on a parameter σ, 0 < σ < 1, i.e.
a continuous family of the models is considered. The discrete versions of the Vidale � Wolfe

model and the Sethi model are particular cases of this model. The seller's problem is to

maximize its pro�t up to the �nite horizon T by the optimal advertising expenditure. This

problem is a discrete multistep optimal control problem, where an advertising expenditure

is a control variable. For our model the optimal control problem can be solved explicitly.

The Bellman method of dynaming programming is used to study the problem. Explicit

recurrence relations for the optimal control and the market share up to the step t,
t = 1, . . . , T , are obtained under the assumption that the di�erence equation of the model

has a solution. Su�cient conditions on the parameters of the model, which ensure the

existence of a solution, are found. The proposed algorithm is implemented as the procedure

OptimalAdvertising in the package Maple. Numerical experiments with the procedure were

carried out.

Keywords: advertising expenditures; optimal control; discrete model; dynamical

programming.

Introduction

One of the �rst models that describes an in�uence of advertising costs on the market
share of a monopolistic �rm was proposed by M.L. Vidale and H.B. Wolfe in 1957 [1]. In
the model, the dynamics of the sales rate s(t) is given by the following di�erential equation

ṡ(t) = γu(t) [m− s(t)]− δs(t), s(t0) = s0, (1)

where u(t) is the advertising e�ort, i.e. a control variable. Here m is a saturation level
of the sale rate, γ is a response constant characterizing e�ciency of advertising, and δ is
a decay constant that determines the rate at which consumers are lost due to product
obsolescence.

The classical monopoly model having numerous application was suggested by S.P. Sethi
in 1983 [2]. Here the dynamics of the market share x(t) is given by the non-linear di�erential
equation

ẋ(t) = ρu(t)
√

1− x(t)− δx(t), x(t0) = x0. (2)

The continuous models are considered in the most works on optimal advertising.
Articles on the discrete-time models are more rare (see, however, [3�5]) because in this
case it is di�cult to obtain an explicit solution.
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But the discrete-time models are often preferable in view of the discrete nature of the
decisions about funding and promotions.

In the present work, we propose a new discrete model of optimal advertising. The
discrete versions of the Vidale � Wolfe model and the Sethi model are particular cases of
this model. Note that the model corresponds to all desirable properties [6].

1. Generalized Sethi model

Let us consider the problem of �nding of the optimal cost of advertising e�ort for a
monopolistic �rm that entered the market with a new product. We use a dynamic model
in discrete time.

Let t = 1, . . . , T be decision points in time (steps of a dynamic process), X(t) �
a market share at time t (where X(t) ∈ [0, 1]), X0 = X(0), u(t) � an advertising
expenditure rate at time t, ρ � a response constant, δ ∈ [0, 1] � a market share decay
constant, σ ∈ (0, 1) � a non-linearity parameter of the model. The parameter ρ determines
the e�ectiveness of advertising, and δ determines the rate at which consumers are lost due
to product obsolescence, forgetting, etc.

We consider a generalization of discrete version of the Sethi model [2,7]. In our model
the dynamics of X(t) is given by the following di�erence equation

X(t+ 1) = (1− δ)X(t) + ρu(t)[1−X(t)]1−σ, t ∈ [0;T ), X(0) = X0. (3)

It is required that δ, ρ, σ are such that X(t) ∈ [0, 1] at any step t.
A choose of the additional term in the form ρu(t)[1−X(t)]1−σ can be explained as in

the Sethi model (i.e. for σ = 1/2). The function [1−X(t)]1−σ − [1−X(t)] represents as

[1−X(t)]1−σ − [1−X(t)] = σX(t)[1−X(t)] +
σ(σ + 1)

2
X2(t) + . . . ,

and, for su�ciently small X(t), this di�erence is proportial to X(t)[1 − X(t)]. Thus, as
in [2],

ρu(t)[1−X(t)]1−σ ≈ ρu(t)
(
1−X(t)

)
+ σρu(t)X(t)

(
1−X(t)

)
.

The term ρu(t)
(
1−X(t)

)
is a response to advertising that acts positively on the unsold

portion (1−X(t)) of the market. The term σρu(t)X(t)
(
1−X(t)

)
can be considered as an

additional process of word-of-mouth communication between consumers comprising the
sold portion X(t) and those comprising the unsold portion (1−X(t)).

Advertising rate u(t) is a control variable of the dynamic system. The control sequence
is a vector

u = (u(0), u(1), . . . , u(T − 1)) .

The control variable u(t) is used to �nd the optimal advertising expenditure in order to
obtain the maximal pro�t at the time t = T .

In our model the discounted pro�t functional is given by the formula:

J =
mX(T )

(1 + r)T
+

T−1∑
k=0

mX(k)− cu1/σ(k)

(1 + r)k
. (4)

Here m is the revenue potential (a margin per unit product), r is the discount rate, c
is the coe�cient characterizing the cost of advertising. In the sequel we scale the pro�t
functional J such that c = 1.

14 Journal of Computational and Engineering Mathematics



COMPUTATIONAL MATHEMATICS

The part of the pro�t functional J corresponding to the advertising expenditure is the

term −
T−1∑
k=0

cu1/σ(k)

(1 + r)k
. We use the non-linear advertising expenditure to take into account

a decreasing response of marketing e�orts to the �rm pro�t (0 < σ < 1). The case when the
cost of the advertising expenditure is a quadratic function u2(k) has often been studied
in the literature (see [8, 9]). We consider more general situation when the non-linearity
parameter 1/σ ∈ (1,∞). Note that in this case the optimal control problem can be solved
explicitly.

An equivalent approach is a transference of the non-linearity into the dynamic
equation (3) (see, e.g., [5, 10]). Then we can use the linear function of the advertising
expenditure in the pro�t functional. For a further discussion of this issue, see [11].

2. Solving of the Optimal Control Problem

In this section we obtain a recurrence relation for optimal control by the dynamic
programming method [12]. In this multi-step method it is necessary to construct
the Bellman function

V (0)(X(0)), V (1)(X(1)), . . . , V (T )(X(T ))

and the control sequence u∗ = (u∗(0), u∗(1), . . . , u∗(T − 1)).
Solving of the problem is carried out in reverse order, starting with the �nal step T .

The Bellman function at the step T is

V (T )(X(T )) = max
u(T )>

mX(T )− u1/σ(T )

(1 + r)T
=

mX(T )

(1 + r)T
,

because the control u(T ) is absent at this step. Recall that we suppose that c = 1. Let us
write V (T )(X(T )) in the following form:

V (T )(X(T )) =
m

(1 + r)T
[αTX(T ) + βT ].

where αT = 1, βT = 0.
The Bellman function at the step k is de�ned by the formula

V (k)(X(k)) = max
u(k)>0

W (k,X(k), u(k)) = max
u(k)>0

[mX(k)− u1/σ(k)

(1 + r)k
+ V (k+1)

]
,

where k = T − 1, . . . , 0. This de�nition means that we must optimize the advertising
expenditure at the step k taking into account the sales X(k) achieved at this moment.
The value u(k) = u∗(k), for which the function W (k,X(k), u(k)) has the maximum, is the
desired control at the point k. It is clear that the value V (0)(X(0)) is the maximal value
of the pro�t functional J .

The basic results of the work are the following two theorems.

Theorem 1. Let δ,m, ρ, r, σ be the parameters of the model such that X(t) ∈ [0, 1]
for all t = 1, . . . , T . Then a solution of the optimal control problem exists, and
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the sequence V (0)(X(0)), V (1)(X(1)), . . . , V (T )(X(T )) and the optimal control sequence
u∗ = (u∗(0), u∗(1), . . . , u∗(T − 1)) are obtained by the formulas

V (k)(X(k)) =
m

(1 + r)T
[
αkX(k) + βk

]
, (5)

u∗(k) =

(
mσραk+1

(1 + r)T−k

) σ
1−σ

[1−X(k)]σ , (6)

where

αk = αk+1

[
(1− δ)− (1− σ)ρ

(
mσραk+1

(1 + r)T−k

) σ
1−σ

]
+ (1 + r)T−k, (7)

βk = βk+1 + (1− σ)ρ

(
mσραk+1

(1 + r)T−k

) σ
1−σ

. (8)

and αT = 1, βT = 0. Here X(k) is given by the following linear di�erence equation

X(k + 1) =

[
1− δ − ρ

(
mσραk+1

(1 + r)T−k

) σ
1−σ

]
X(k) + ρ

(
mσραk+1

(1 + r)T−k

) σ
1−σ

, (9)

which is obtained from (3) under u(k) = u∗(k).

Proof.
Let us prove the theorem by induction on k = T − 1, . . . , 1, 0.
For k = T − 1 we have

V (T−1)(X(T − 1)) = max
u(T−1)>0

W (T−1) = max
u(T−1)>0

[mX(T − 1)− u1/σ(T − 1)

(1 + r)T−1
+ V (T )

]
.

Substitute X(T ) from (3) into V (T ). We get

W (T−1) =
mX(T − 1)− u1/σ(T − 1)

(1 + r)T−1
+

+
m

(1 + r)T

(
(1− δ)X(T − 1) + ρu(T − 1)[1−X(T − 1)]1−σ

)
.

It is easy to see that the functionW (T−1) of the variable u(T−1) achieves its maximum
at the point

u∗(T − 1) =

(
mρσ

(1 + r)

) σ
1−σ

[1−X(T − 1)]σ .

Hence formula (6) is true at k = T − 1 and we obtain

V (T−1)(X(T − 1)) =

=
m

(1 + r)T

[(
(1 + r) + (1− δ)− ρ(1− σ)

(
mσρ

1 + r

) σ
1−σ

)
X(T − 1) + ρ

(
mσρ

1 + r

) σ
1−σ

]
.
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Denote

αT−1 = (1− δ)− ρ(1− σ)

(
mσρ

1 + r

) σ
1−σ

+ (1 + r), βT−1 = ρ(1− σ)

(
mσρ

1 + r

) σ
1−σ

.

Therefore

V (T−1)(X(T − 1)) =
m

(1 + r)T

[
αT−1X(T − 1) + βT−1

]
,

where αT−1, βT−1 are found by (7), (8) at k = T − 1.
Suppose that at the step k + 1 we have

V (k+1)(X(k + 1)) =
m

(1 + r)T
[
αk+1X(k + 1) + βk+1

]
.

Find now V (k)(X(k)) = maxu(k)>0W
(k) at the point k. Here

W (k) =
mX(k)− u1/σ(k)

(1 + r)k
+ V (k+1)(X(k + 1)) =

=
mX(k)− u1/σ(k)

(1 + r)k
+

m

(1 + r)T
[
αk+1X(k + 1) + βk+1

]
.

A stationary point of the function W (k) is

u∗(k) =

(
mσραk+1

(1 + r)T−k

) σ
1−σ

[1−X(k)]σ .

Since (
W (k)

)′′
= − 1− σ

(1 + r)kσ2
u

1−2σ
σ (k) < 0,

then W (k) has a maximum at the point u∗(k). Hence the optimal position control u∗(k) is
de�ned by formula (6).

Now we can �nd V (k)(X(k)) = W (k) |u(k)=u∗(k):

V (k)(X(k)) =

=
m

(1 + r)T

{[
(1− δ)αk+1 − (1− σ)ραk+1

(
mσραk+1

(1 + r)T−k

) σ
1−σ

+ (1 + r)T−k

]
X(k)

+ βk+1 +

(
mσραk+1

(1 + r)T−k

) σ
1−σ

}
.

Thus,

V (k)(X(k)) =
m

(1 + r)T
[
αkX(k) + βk

]
,

where αk, βk are found by formulas (7) è (8). This completes the proof.

2
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The statements of the theorem for σ = 1/2 were obtained previously in [13].
Now we give some su�cient condition on the parameters of the model guaranteeing

the requirement X(t) ∈ [0, 1] for a solution of the optimal control problem. We need the
following lemmas.

Lemma 1. Let {αk}Tk=0 be the sequence de�ning by recurrence relation (7)

αk = αk+1

[
(1− δ)− (1− σ)ρ

(
mσραk+1

(1 + r)T−k

) σ
1−σ

]
+ (1 + r)T−k, αT = 1.

If the condition
mσρ

1
σ < r + δ, (10)

is hold then the numbers bk = ρ

(
mσραk

(1 + r)T−k+1

) σ
1−σ

are satis�ed the inequalities

bk < 1, k = 0, 1, . . . , T. (11)

Proof.
By the de�nition of bk we have that inequalities (11) are equivalent to

αk <
(1 + r)T−k+1

mσρ
1
σ

.

For k = T the inequality holds because δ ∈ [0, 1]. Suppose that αk+1 < (1+r)T−k

mσρ
1
σ

. Then it

follows from (7) and (10) that

αk < αk+1(1− δ) + (1 + r)T−k <
(1 + r)T−k

mσρ
1
σ

[
1− δ +mσρ

1
σ

]
<

(1 + r)T−k+1

mσρ
1
σ

.

2

Lemma 2. If inequality (10) is hold, then the solution X(t) of eqution (9) satis�es to the
condition X(t) ∈ [0, 1] for any initial condition X(0) = X0, X0 ∈ [0, 1].

Proof.
Rewrite equation (9) in the form

X(k + 1) = X(k)(1− δ) + [1−X(k)]bk, (12)

where bk = ρ

(
mσραk

(1 + r)T−k+1

) σ
1−σ

.

We have bk ∈ [0, 1], by lemma (1). Thus 1− δ and bk ∈ [0, 1].
For k = 0 the initial value X0 belongs to the segment [0, 1].
HenceX(1) = X(0)(1−δ)+[1−X(0)]b0 also belongs to [0, 1] as the convex combination

of the points 1− δ and b0.
Suppose that X(k) ∈ [0, 1]. From equation (12) it follows that X(k+1) ∈ [0, 1] as the

convex combination of the points 1− δ and bk. The lemma is proved by induction on k.

2
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Theorem 2. If inequality (10) is hold, then the sequences

u∗ = (u∗(0), u∗(1), . . . , u∗(T − 1)),

V (0)(X(0)), V (1)(X(1)), . . . , V (T )(X(T ))

from theorem (1) are the solution of the optimal control problem, and

max
u

J(u) = V (0)(X(0)).

Proof.
By theorem (1), if X(t) ∈ [0, 1] for all t = 1, . . . , T , then a solution of the optimal

control problem exists and can be found by formulas (5) � (9). On the other hand, if
inequality (10) is hold, then, by lemma (2), the solution X(t) of eqution (9) satis�es to
the condition X(t) ∈ [0, 1]. Thus, in theorem (1) we construct the solution of the optimal
control problem under condition (10).

2

3. Algorithm and Example

Theorems (1) � (2) allow to propose the following algorithm for �nding the optimal
advertising expenditure.

Algorithm of Optimal Advertising.

Input: T ∈ N is a number of dicision points; X0 ∈ [0, 1] is a initial market share;
δ ∈ [0, 1] is a market share decay constant; m is a marget per unit product (the revenue
potential); ρ is the coe�cient of e�ectiveness of advertising; r is the discount rate at the
initial point in time; σ ∈ (0, 1) is the nonlinearity parameters of the model.

Output: u∗ = (u∗(0), u∗(1), . . . , u∗(T − 1)) is the optimal control sequence;
V (0)(X(0)), V (1)(X(1)), . . . , V (T )(X(T )) is the sequence of the value of the Bellman
function V (0) (X(0)) is the maximal value of the pro�t functional); X(k) is the fraction of
the total market at the step k = T .

Step 1. Initialization.
Set the initial values of the input parameters.

Step 2. Veri�cation of X0, δ, σ.
If X0 /∈ [0, 1], or δ /∈ [0, 1], or σ /∈ (0, 1) then STOP.

Step 3. Veri�cation of the su�cient condition.

If test :=
1− δ +mσρ1/σ

1 + r
≥ 1 then STOP.

Step 3. Finding αk, βk.
The coe�cients αk, βk is de�ned by formulas (7), (8) with the initial values αT = 1,
βT = 0.

Step 3. Finding X(k).
The fraction of the total market X(k) is found from linear di�erence equation (9)
by the initial value X(0) = X0.
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Step 4. Finding V (k), u∗.
The Bellman functions V (k) and the optimal control u∗(k) is found by formulas (5),
(6).

Step 5. End of the algorithm.

The algorithm was implemented as the Maple procedure OptimalAdvertising. We
pass to the procedure the following parameters: T, X0 := X0, δ, m, ρ, r, σ. The procedure
returns the vectors U, V, X and constracts the plots pointU, pointV, pointX.

The following example shows how to call the procedure.

Example 1.

> restart; with(plots):

> T := 24; X0:=0.5; delta:=0.2; m:=0.6; rho:=0.5; r:=0.1; sigma:=0.8;

> OptimalAdvertising(T,X0,delta,m,rho,r,sigma);

the total cost of advertising=3.565690

the value of the profit functional=1.459383

the maximal value of the profit functional=1.479754

>U[10];

0.1839563015

>V[10];

0.4462382663

>X[10];

0.4167617648

The procedure returns the optimal control sequence U, the sequence of the value
of the Bellman function V, and the fraction of the total market X. Moreover, the

procedure �nds the total cost of advertising sumU =
T−1∑
k=0

u∗(k), the market share Y (t)

from equation (3) with u(t) =
sumU

T
(the market share for the uniform advertising

expenditure), the value of the pro�t functional JY for u(t) =
sumU

T
, and the maximal

value of the pro�t functional maxu J(u) = V [0].
To plot the optimal advertising expenditure U(k) we use the ¾display¿ command of

Maple.

>display({pointU, polygU});

In order to compare the market share X(t) for the optimal advertising expenditure
and the market share Y (t) for the uniform advertising expenditure we display the plots
X(t), Y (t) together.

>display({pointX, pointY, polygX, polygY});

Conclusions

In the paper, we develop a discrete model of optimal advertising since the process
of funding the advertising campaign is discrete. It is important that the optimal control
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problem for our new model can be solved explicitly. The model is nonlinear, and the
non-linearity depends on a parameter σ, 0 < σ < 1. We use σ to adapt the model to
speci�c markets more precisely. If there is the retrospective statistical information about
the dependence of the market share on the cost of an advertising campaign, then we can
evaluate this parameter for the analyzed market. However testing of the model on real
markets will be an object of future studies. Moreover, it is expected that the model can
be used in the problem of optimal control for an oligopoly model of advertising to obtain
solutions in closed form.
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ÎÁ ÎÄÍÎÉ ÄÈÑÊÐÅÒÍÎÉ ÌÎÄÅËÈ ÎÏÒÈÌÀËÜÍÎÃÎ
ÏËÀÍÈÐÎÂÀÍÈß ÐÅÊËÀÌÍÎÃÎ ÁÞÄÆÅÒÀ

Â.Ì. Àäóêîâ, Í.Â. Àäóêîâà, Ê.Í. Êóäðÿâöåâ

Â áîëüøèíñòâå ðàáîò ïî îïòèìàëüíîìó ïëàíèðîâàíèþ ðåêëàìíîãî áþäæåòà ðàñ-

ñìàòðèâàþòñÿ íåïðåðûâíûå ìîäåëè. Ñòàòüè ïî ìîäåëÿì ñ äèñêðåòíûì âðåìåíåì âñòðå-

÷àþòñÿ áîëåå ðåäêî, ò.ê. â ýòîì ñëó÷àå òðóäíî ïîëó÷èòü ÿâíîå ðåøåíèå. Â äàííîé ñòàòüå

ïðåäëîæåíà íîâàÿ äèñêðåòíàÿ ìîäåëü îïòèìàëüíîãî ïëàíèðîâàíèÿ ðåêëàìíîãî áþä-

æåòà äëÿ ïðîäàâöà-ìîíîïîëèñòà íîâîãî òîâàðà. Â ìîäåëè äèíàìèêà ïðîäàæ çàäàåòñÿ

íåëèíåéíûì ðàçíîñòíûì óðàâíåíèåì. Íåëèíåéíîñòü çàâèñèò îò ïàðàìåòðà σ, 0 < σ < 1,
ò.å., ôàêòè÷åñêè, ðàññìàòðèâàåòñÿ íåïðåðûâíîå ñåìåéñòâî ìîäåëåé. Äèñêðåòíûå âåð-

ñèè ìîäåëè Âèäàëÿ � Âîëôà è ìîäåëè Ñåòòè ÿâëÿþòñÿ ÷àñòíûìè ñëó÷àÿìè ýòîé ìî-

äåëè. Öåëü ïðîäàâöà ìàêñèìèçèðîâàòü ïðèáûëü ê êîíå÷íîìó ãîðèçîíòó ïëàíèðîâàíèÿ

T ñ ïîìîùüþ îïòèìàëüíîãî ïëàíèðîâàíèÿ ðåêëàìíûõ ðàñõîäîâ. Äàííàÿ çàäà÷à ÿâëÿ-

åòñÿ äèñêðåòíîé ìíîãîøàãîâîé çàäà÷åé îïòèìàëüíîãî óïðàâëåíèÿ, ãäå óïðàâëåíèå �

ýòî ðàñõîäû íà ðåêëàìó. Äëÿ íàøåé ìîäåëè çàäà÷à îïòèìàëüíîãî óïðàâëåíèÿ ìîæåò

áûòü ðåøåíà ÿâíî. Äëÿ åå èññëåäîâàíèÿ èñïîëüçóåòñÿ ìåòîä äèíàìè÷åñêîãî ïðîãðàì-

ìèðîâàíèÿ Áåëëìàíà. Ïîëó÷åíû ÿâíûå ðåêóððåíòíûå ñîîòíîøåíèÿ äëÿ îïòèìàëüíîãî

óïðàâëåíèÿ è äîëè ðûíêà ê ìîìåíòó âðåìåíè t, t = 1, . . . , T , â ïðåäïîëîæåíèè, ÷òî

ðàçíîñòíîå óðàâíåíèå â ìîäåëè èìååò ðåøåíèå. Íàéäåíû äîñòàòî÷íûå óñëîâèÿ íà ïà-

ðàìåòðû ìîäåëè, ãàðàíòèðóþùèå ñóùåñòâîâàíèå ðåøåíèÿ. Ïðåäëîæåííûé àëãîðèòì

ðåàëèçîâàí â âèäå ïðîöåäóðû OptimalAdvertising â ïàêåòå Maple. Ïðîâåäåíû ÷èñëåí-

íûå ýêñïåðèìåíòû ñ äàííîé ïðîöåäóðîé.

Êëþ÷åâûå ñëîâà: ðåêëàìíûå ðàñõîäû; îïòèìàëüíîå óïðàâëåíèå; äèñêðåòíàÿ ìî-

äåëü; äèíàìè÷åñêîå ïðîãðàììèðîâàíèå.
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