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The continuous models are considered in the most works on optimal advertising.
Articles on the discrete-time models are more rare because in this case it is difficult to
obtain an explicit solution. In this paper a new discrete model of optimal advertising for
a monopolist-seller of a new goods is proposed. In the model, the dynamics is given by a
nonlinear difference equation. The non-linearity depends on a parameter o, 0 < 0 < 1, i.e.
a continuous family of the models is considered. The discrete versions of the Vidale — Wolfe
model and the Sethi model are particular cases of this model. The seller’s problem is to
maximize its profit up to the finite horizon 7" by the optimal advertising expenditure. This
problem is a discrete multistep optimal control problem, where an advertising expenditure
is a control variable. For our model the optimal control problem can be solved explicitly.
The Bellman method of dynaming programming is used to study the problem. Explicit
recurrence relations for the optimal control and the market share up to the step ft,
t=1,...,T, are obtained under the assumption that the difference equation of the model
has a solution. Sufficient conditions on the parameters of the model, which ensure the
existence of a solution, are found. The proposed algorithm is implemented as the procedure
Optimal Advertising in the package Maple. Numerical experiments with the procedure were
carried out.

Keywords: advertising expenditures; optimal control; discrete model; dynamical

programming.

Introduction

One of the first models that describes an influence of advertising costs on the market
share of a monopolistic firm was proposed by M.L. Vidale and H.B. Wolfe in 1957 [1]. In
the model, the dynamics of the sales rate s(t) is given by the following differential equation

(1) = yu(t) [m — ()] - 3s(2), s(to) = so. (1)

where u(t) is the advertising effort, i.e. a control variable. Here m is a saturation level
of the sale rate, v is a response constant characterizing efficiency of advertising, and ¢ is
a decay constant that determines the rate at which consumers are lost due to product
obsolescence.

The classical monopoly model having numerous application was suggested by S.P. Sethi
in 1983 [2]. Here the dynamics of the market share x(t) is given by the non-linear differential

equation
) = pu(t)V/1 — z(t) ), z(to) = . (2)

The continuous models are considered in the most works on optimal advertising.
Articles on the discrete-time models are more rare (see, however, [3-5|) because in this
case it is difficult to obtain an explicit solution.
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But the discrete-time models are often preferable in view of the discrete nature of the
decisions about funding and promotions.

In the present work, we propose a new discrete model of optimal advertising. The
discrete versions of the Vidale — Wolfe model and the Sethi model are particular cases of
this model. Note that the model corresponds to all desirable properties [6].

1. Generalized Sethi model

Let us consider the problem of finding of the optimal cost of advertising effort for a
monopolistic firm that entered the market with a new product. We use a dynamic model
in discrete time.

Let t = 1,...,T be decision points in time (steps of a dynamic process), X(t) —
a market share at time ¢ (where X(¢) € [0,1]), Xo = X(0), u(t) — an advertising
expenditure rate at time t, p — a response constant, 6 € [0,1] — a market share decay
constant, o € (0, 1) — a non-linearity parameter of the model. The parameter p determines
the effectiveness of advertising, and § determines the rate at which consumers are lost due
to product obsolescence, forgetting, etc.

We consider a generalization of discrete version of the Sethi model [2,7]. In our model
the dynamics of X (¢) is given by the following difference equation

Xt+1)=(1-0)X(t)+pu®)[l — X)), t€[0;T), X(0) = X,. (3)

It is required that 0, p, o are such that X (¢) € [0, 1] at any step t.
A choose of the additional term in the form pu(#)[1 — X (¢)]'~7 can be explained as in
the Sethi model (i.e. for ¢ = 1/2). The function [1 — X (¢)]'~7 — [1 — X (¢)] represents as

o(c+1)
2

and, for sufficiently small X (¢), this difference is proportial to X (¢)[1 — X (¢)]. Thus, as
in [2],

[1— X0 —[1 - X(1)] = o X(1)[1 — X(&)] + X2+ ...,

pu(t)[1 — X ()] &~ pu(t) (1 — X (1)) + opu(t) X () (1 — X (¢)).
The term pu(t)(1 — X (t)) is a response to advertising that acts positively on the unsold
portion (1—X(t)) of the market. The term opu(t)X (¢)(1 — X (t)) can be considered as an
additional process of word-of-mouth communication between consumers comprising the
sold portion X (¢) and those comprising the unsold portion (1 — X (¢)).
Advertising rate u(t) is a control variable of the dynamic system. The control sequence
is a vector

w=(u(0),u(l),...,u(T —1)).
The control variable u(t) is used to find the optimal advertising expenditure in order to
obtain the maximal profit at the time ¢t =T
In our model the discounted profit functional is given by the formula:
mX(T) = mX(k) — cu/ (k)

J:—(HT)T+]€:O T (4)

Here m is the revenue potential (a margin per unit product), r is the discount rate, c
is the coefficient characterizing the cost of advertising. In the sequel we scale the profit
functional J such that ¢ = 1.
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The part of the proﬁt functional J corresponding to the advertising expenditure is the
1/0
term — Z i+ . We use the non-linear advertising expenditure to take into account
)k

a decreasmg response of marketing efforts to the firm profit (0 < o < 1). The case when the
cost of the advertising expenditure is a quadratic function u?(k) has often been studied
in the literature (see [8,9]). We consider more general situation when the non-linearity
parameter 1/0 € (1,00). Note that in this case the optimal control problem can be solved
explicitly.

An equivalent approach is a transference of the non-linearity into the dynamic
equation (3) (see, e.g., [5,10]). Then we can use the linear function of the advertising
expenditure in the profit functional. For a further discussion of this issue, see [11].

2. Solving of the Optimal Control Problem

In this section we obtain a recurrence relation for optimal control by the dynamic
programming method [12]. In this multi-step method it is necessary to construct
the Bellman function

and the control sequence u* = (u*(0),u*(1),...,u*(T —1)).
Solving of the problem is carried out in reverse order, starting with the final step 7.
The Bellman function at the step 7' is

- B mX(T) —u?(T)  mX(T)
VEOX(T) = e = =

because the control u(7) is absent at this step. Recall that we suppose that ¢ = 1. Let us
write V™) (X(T)) in the following form:

m

VIO(X(T)) = AT

lar X (T') + Br).

where ar = 1, By = 0.
The Bellman function at the step £ is defined by the formula

X (k) — u'7 (k)
) (X (k)) = W (k, X (k), u(k)) = m (k+1)]
VX (R) = max Wk, X (k) ulk)) = moax | ——a— 57— +V7 ),
where £ = T — 1,...,0. This definition means that we must optimize the advertising

expenditure at the step k taking into account the sales X (k) achieved at this moment.
The value u(k) = u*(k), for which the function W (k, X (k), u(k)) has the maximum, is the
desired control at the point k. It is clear that the value V(X (0)) is the maximal value
of the profit functional J.

The basic results of the work are the following two theorems.

Theorem 1. Let §,m,p,r,o be the parameters of the model such that X(t) € [0,1]
for oll t = 1,...,T. Then a solution of the optimal control problem exists, and
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the sequence VO (X(0)), V(X (1)),...,VINX(T)) and the optimal control sequence
u* = (u*(0),u*(1),...,u*(T — 1)) are obtained by the formulas

VX)) = fr)T [ X (k) + 5], (5)
i) = () - ©)
where .
c%:amlbrﬂn—u—am(gﬁ%%%)“”441+mﬂﬂ (7)
Br =B+ (1 —0)p (%)H- (8)

and ar = 1,87y = 0. Here X (k) is given by the following linear difference equation
MO P11 7 Mo P11 7
Xk+1)=|1-0—p|—F+—+ X(k —_—
ey [ (@75 ] o (i)

which is obtained from (3) under u(k) = u*(k).

—~
N
~—

Proof.
Let us prove the theorem by induction on k=T —1,...,1,0.
For k =T — 1 we have

VID(X(T - 1) = max WT Y = max
w(T—1)>0 u(T—1)>0

mX(T — 1) —u'/?(T — 1) -
| A+ +V0),

Substitute X (7' from (3) into V™). We get

mX(T —1) —u'/o(T — 1)+

W(T—l) _
(14 7)1

m

+ m((l — 5)X(T — 1) + pu(T — 1)[1 _ X(T _ 1)]1—0>‘

It is easy to see that the function W (=1 of the variable u(T —1) achieves its maximum
at the point
mpo

wH(T —1) = ((1+T))130[1—X(T—1)]”.

Hence formula (6) is true at k =T — 1 and we obtain

VI(X(T - 1)) =

((1+7’)—|—(1—5)—p(1—0)(Tji)ﬁ)X(T—l)+p(?—ii>ﬂ].
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Denote
o . . . maop % _ _ maop ﬁ
ar=(1-0) = 1= 0) (P22) e, s =plt-o) (172)7
Therefore
(T-1) )y = _
VI (X(T — 1)) (1+T)T[O<T_1X(T 1)+5T_1},

where ar_1, fr_1 are found by (7), (8) at k=1 — 1.
Suppose that at the step k + 1 we have

VED(X (h+1) = —[arpn X (k+1) + B,

(1+7r)

Find now V¥ (X (k)) = max, 0 W* at the point k. Here

mX (k) —u'/? (k)

(k) —
W (T+r)F

+VED(X(k+1)) =

mX (k) — u'/7(k m
— ((1)+ r)k (k) + (1+nr)T [ann X (k+ 1) + B,

A stationary point of the function W®) is

ww=(§%§%y;u—MMf

Since

L //_ l—0 1-20
(W) = Tt (k) <0,

then W®*) has a maximum at the point u*(k). Hence the optimal position control u*(k) is
defined by formula (6).
Now we can find V(X (k) = W® |, cu):

V(X (k) =

o

__m { [(1 — )k — (1 — o) paysq (%) I-o Ly T)Tk] X (k)

(1+nr)T
Mo P11 7
e () }

ar X (k) + Br),

Thus,
m

(1+r)T [
where ay, B are found by formulas (7) u (8). This completes the proof.

V(X (k) =
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The statements of the theorem for ¢ = 1/2 were obtained previously in [13].

Now we give some sufficient condition on the parameters of the model guaranteeing
the requirement X (t) € [0, 1] for a solution of the optimal control problem. We need the
following lemmas.

Lemma 1. Let {ax}1_, be the sequence defining by recurrence relation (7)

ap = Qppn [(1_5)_(1_0)p (M) z

(14 r)TF + 14+ ar=1.

If the condition .
mops <1+ 0, (10)

Mo po

18 hold then the numbers by, = p (m
-

1—0o
) are satisfied the inequalities
b, <1, k=0,1,...,T. (11)

Proof.

By the definition of b, we have that inequalities (11) are equivalent to
(1 + T)T—k+1
ap < —t—.

mope

T—k

For k = T the inequality holds because d € [0, 1]. Suppose that ax.; < W) " Then it
mopo
follows from (7) and (10) that

1
T 1—90+mop-
mopes

1 T—k 1 T—k+1
ak<ak+1(1_5)+(1+7~)T—k<& ]<¢

1
maope

O

Lemma 2. If inequality (10) is hold, then the solution X (t) of eqution (9) satisfies to the
condition X (t) € [0, 1] for any initial condition X (0) = X,, Xo € [0, 1].

Proof.
Rewrite equation (9) in the form
X(k+1)=X(k)(1-=90)+[1— X(k)]bg, (12)
mo pay 7
where bk =p (W
We have by, € [0,1], by lemma (1). Thus 1 — § and by, € [0, 1].
For k = 0 the initial value X, belongs to the segment [0, 1].
Hence X (1) = X(0)(1—0)+[1—X(0)]by also belongs to [0, 1] as the convex combination

of the points 1 — ¢ and by.
Suppose that X (k) € [0, 1]. From equation (12) it follows that X (k+ 1) € [0,1] as the
convex combination of the points 1 — § and b;. The lemma is proved by induction on k.

O
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Theorem 2. If inequality (10) is hold, then the sequences
u* = (u*(0),u"(1),...,u"(T — 1)),

VO(X(0)), VI(X(1),...,VDX(T))

from theorem (1) are the solution of the optimal control problem, and

max J(u) = VO (X(0)).

Proof.

By theorem (1), if X(t) € [0,1] for all t = 1,...,T, then a solution of the optimal
control problem exists and can be found by formulas (5) — (9). On the other hand, if
inequality (10) is hold, then, by lemma (2), the solution X (¢) of eqution (9) satisfies to
the condition X (¢) € [0,1]. Thus, in theorem (1) we construct the solution of the optimal
control problem under condition (10).

O

3. Algorithm and Example

Theorems (1) — (2) allow to propose the following algorithm for finding the optimal
advertising expenditure.

Algorithm of Optimal Advertising.

Input: 7 € N is a number of dicision points; Xy € [0,1] is a initial market share;
d € [0,1] is a market share decay constant; m is a marget per unit product (the revenue
potential); p is the coefficient of effectiveness of advertising; 7 is the discount rate at the
initial point in time; o € (0,1) is the nonlinearity parameters of the model.

Output: v* = (u*(0),u*(1),...,u"(T"—1)) is the optimal control sequence;
VO(X(0), V(X (1)),...,VI(X(T)) is the sequence of the value of the Bellman

function V(©) (X (0)) is the maximal value of the profit functional); X (k) is the fraction of
the total market at the step k=T

Step 1. Initialization.
Set the initial values of the input parameters.

Step 2. Verification of X, 9, o.
If Xo ¢ 10,1], or 6 ¢ [0,1], or o ¢ (0,1) then STOP.

Step 3. Verification of the sufficient condition.

1/o
L= 0xmop o hen STOP.
1+
Step 3. Finding oy, (k.
The coefficients oy, S is defined by formulas (7), (8) with the initial values ar = 1,
Br = 0.
Step 3. Finding X (k).
The fraction of the total market X (k) is found from linear difference equation (9)
by the initial value X (0) = X,.

If test ;=
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Step 4. Finding V' (k), u*.

The Bellman functions V*) and the optimal control u*(k) is found by formulas (5),
(6).

Step 5. End of the algorithm.

The algorithm was implemented as the Maple procedure OptimalAdvertising. We
pass to the procedure the following parameters: T, X0 := Xy, §, m, p, r, 0. The procedure
returns the vectors U, V, X and constracts the plots pointU, pointV, pointX.

The following example shows how to call the procedure.

Example 1.

> restart; with(plots):

>T := 24; X0:=0.5; delta:=0.2; m:=0.6; rho:=0.5; r:=0.1; sigma:=0.8;
> OptimalAdvertising(T,X0,delta,m,rho,r,sigma);

the total cost of advertising=3.565690

the value of the profit functional=1.459383

the maximal value of the profit functional=1.479754

>U[10];

0.1839563015
>V[10];

0.4462382663
>X[10];

0.4167617648

The procedure returns the optimal control sequence U, the sequence of the value

of the Bellman function V, and the fraction of the total market X. Moreover, the
T-1
procedure finds the total cost of advertising sumU = > u*(k), the market share Y ()
k=0
. . sumU ) . .
from equation (3) with u(t) = T (the market share for the uniform advertising

U
expenditure), the value of the profit functional JY for u(t) = san , and the maximal

value of the profit functional max, J(u) = V[0].
To plot the optimal advertising expenditure U(k) we use the «display» command of
Maple.

>display({pointU, polygU});

In order to compare the market share X(t) for the optimal advertising expenditure
and the market share Y (¢) for the uniform advertising expenditure we display the plots
X(t), Y(t) together.

>display({pointX, pointY, polygX, polygY});

Conclusions

In the paper, we develop a discrete model of optimal advertising since the process
of funding the advertising campaign is discrete. It is important that the optimal control
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problem for our new model can be solved explicitly. The model is nonlinear, and the
non-linearity depends on a parameter o, 0 < 0 < 1. We use ¢ to adapt the model to
specific markets more precisely. If there is the retrospective statistical information about
the dependence of the market share on the cost of an advertising campaign, then we can
evaluate this parameter for the analyzed market. However testing of the model on real
markets will be an object of future studies. Moreover, it is expected that the model can
be used in the problem of optimal control for an oligopoly model of advertising to obtain
solutions in closed form.
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OB O/ITHOM IVMCKPETHOM MOJIEJIN OIITUMAJIBHOI'O
IIJIAHUPOBAHIA PEKJIAMHOTI'O BIO/I2KETA

B.M. Adyxos, H.B. Adyxosa, K.H. Kydpasues

B GonpmmuicTse pabor MO ONTUMAIBHOMY ILIAHHPOBAHHUIO PEKIAMHOIO OIOMKETa pac-
CMaTPUBAIOTCA HENPEPBIBHBIE MOeu. CTaTby O MOJENAM € TUCKPETHBIM BPEMEHEM BCTPE-
qaroTcs Hosiee peaKo, T.K. B 3TOM CJIyH9ae TPYIHO IOy YUTh sBHOE pernenne. B nannoii crarbe
MPEIJIOJKEHa HOBAas MUCKPETHAS MOIENbh ONTUMAJIBLHOIO IIAHUPOBAHUS PEKJIAMHOTO OOI-
JKeTa JJIs IPOJABIA-MOHOIIOJINCTA HOBOI'O TOBapa. B Momesnn guHaAMHUKA MPOJIAXK 3a/aeTCs
HEJTUHEHHBIM PA3HOCTHBIM ypaBuenueM. HenuneitHocTs 3aBucuT ot napamerpa o, 0 < o < 1,
T.€., (paKTHIECKHN, PACCMATPUBAETCA HENPEPBIBHOE ceMelicTBO Mojeneit. Juckpernnie Bep-
cuu mogenn Bumang — Bosda u mogenu Cerru gBALIOTCA 9aCTHBIMU CIYYagMU ITOM MO-
nenu. 1es npogaBIa MAKCUMU3UPOBATE MPUOBLIL K KOHETHOMY TOPU3OHTY TIIAHUPOBAHUS
T ¢ MOMOIIBI0 ONTUMATHLHOTO IJIAHUPOBAHUS PEKJIAMHBIX pacxonoB. /lanHas 3amada sBjs-
ercsd AUCKPETHON MHOTIOMIATOBOM 33/adeil ONTUMAJIHLHOTO YIIPABJIEHUS, TIe yIIpaBIeHWe —
9TO pacxonpl Ha pekiamy. laa Hameil Momenn 3a/1a4a ONTUMAJIHHOTO YIIPABICHUSI MOXKET
ObITh perena sBHO. JLJid ee MCCIENOBAHUS MCIIOIB3YETCs METOJ, IMHAMUYECKOTO IIPOrpaM-
vuposanust Besuimana. Ilosny4densl siBHble peKyPPEHTHbBIE COOTHOIIEHHS /I OIITUMAJIBHOIO
YOPAaBJEHWUS W IOJU PBIHKA K MOMeHTy Bpemenu t, t = 1,..., T, B TIPEIIONOKEHUHN, TTO
PA3HOCTHOE ypaBHEHME B MOJEIN uMeeT perteHne. HalimeHbl 10CTATOYHBIE YCIOBUST HA Ma-
paMeTphbl MOIEIH, TAPAHTUPYIONINE CYIECTBOBAHNE perneHusd. [IpeqIoKeHHplii airopuT™
peanuzoBan B Buze nporeaypbl OptimalAdvertising B makere Maple. IIpoBesennt ducien-
HbI€ IKCIEPUMEHTDI ¢ JaHHOH IpOoLeypoi.

Kauroueevte caosa: pexaammsie pacrodv; ONmMUMENbHOE Yynpasienue; JUCKpemmas Mmo-

deav; JUHAMUYECKOE NPOZDAMMUPOSHHUE.
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