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This paper presents a numerical model of the dynamics of a gas suspension in a channel
with varying geometry. To model the dynamics of a gas suspension, a continuum technique
was used to describe the dynamics of a heterogeneous medium. The carrier medium was
described as a viscous, compressible and thermally conductive gas. For the carrier medium
and the dispersed component, a complete hydrodynamic system of dynamics equations was
solved, including equations for the conservation of density, equations for the conservation
of the spatial components of momentum and energy. The interfacial momentum exchange
included the dynamic Archimedes force, the force of added masses and the aerodynamic
drag force. The heat exchange between the carrier medium and the dispersed phase was
also taken into account. The flow of an inhomogeneous medium and a homogeneous gas
was described in a channel with expansion. To describe the dynamics of a continuous
medium in a non-rectangular region, a transition was made to generalized coordinates.
To integrate the system of equations, the finite-difference MacCormack method of second
order accuracy was used. To suppress numerical oscillations, a nonlinear correction scheme
for the numerical solution was used. A comparison was made of the results of calculations
carried out for the continuum model of the dynamics of a gas suspension and the solution of
a two-dimensional system of Navier-Stokes equations with similar boundary conditions. As a
result of numerical calculations, it was revealed that interphase interaction has a significant
effect on the dynamics of the carrier medium in a gas suspension. The dynamics of the
carrier medium in a gas suspension differs significantly from the dynamics of a homogeneous
gas. Due to interphase interaction, the intensity of the flow of the carrier medium in a gas
suspension is lower than in a homogeneous gas.

Keywords: explicit finite difference scheme; continuum modeling technique; interphase
interaction; Navier-Stokes equation; gassuspension.

Introduction

An application of mathematical methods is the modeling of processes in fluid and
gas mechanics [1-3]. Many problems in fluid and gas mechanics are nonlinear in nature
and are solved primarily not by analytical [1], but by numerical methods. In [2], a
numerical analysis of various modifications of the large particle method was carried out
in relation to problems of wave gas dynamics. In article [3], the process of propagation
of a shock wave in a flat layer, that is, a homogeneous mixture of two gases having
different densities, is numerically simulated. Unlike classical hydrodynamics [1], in the
dynamics of inhomogeneous media [4-8| the nature of the flow depends on the interphase
interaction. In [4] a general theory of the dynamics of multiphase media is presented.
In [5] the problems of the movement of gas-liquid media at high speeds are studied, the
theoretical foundations, calculation methods and applied problems are outlined. In [6],
questions of mathematical modeling of shock wave processes in multiphase media are
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considered, equations are given and the structure of a shock wave in a mixture of gases
and in a two-phase mixture is found. In a one-dimensional approximation, based on
the ideal gas model, numerical calculations of the dynamics of dusty, gas-droplet and
powder media were carried out in [7]. In [8], numerical algorithms were developed and
the results of calculations of shock wave and detonation processes in gas suspensions of
metal particles are presented. In 9], a numerical algorithm was developed for solving the
Riemann problem for models of compressible two-phase flow containing non-conservative
terms responsible for the interaction of phases. In [1], the interaction of homogeneous
and heterogeneous detonation waves in mixtures containing aluminum particles and water
droplets was studied using the methods of mechanics of multiphase media. Modeling of
detonation suppression using clouds of inert particles was carried out. In [11], calculation
formulas are given and the calculation methodology is described in detail in relation to
a single-speed model of a heterogeneous medium in the presence of gravitational forces.
In [12], particle flow was numerically simulated to study the process of mass transfer of
microparticles in an air duct and in channels with different characteristic flow sizes. The
process of formation of particle agglomerations was considered. The flow of single particles
in a curved channel has been studied. In [13| were considered the issues of application of
classical methods of hydromechanics based on the theory of functions of a complex variable
for modeling the dynamics of multiphase media.

An analysis of works devoted to the dynamics of inhomogeneous media shows that the
problem of describing the dynamics of gas suspensions has various practical applications.
The goal of many studies of gas suspension flows is to take into account the interphase
interaction on the overall flow of the mixture. To simulate flows of inhomogeneous media,
equilibrium models are used that describe the flow of an inhomogeneous medium with
mathematical models of the dynamics of a homogeneous medium, taking into account
coefficients that take into account the inhomogeneity of the moving medium. Also,
the dynamics of the medium can be described taking into account the differences in
the concentrations of the components but without taking into account the interphase
exchange of momentum and heat transfer — the diffusion technique [4]. When modeling
flows in which the components of the mixture have similar mass fractions and different
states of aggregation, continuum mathematical models are the most effective [4-8|. The
continuum technique for modeling the dynamics of inhomogeneous media takes into
account interphase interaction (exchange of momentum and heat) and for each phase
a complete hydrodynamic system of equations is integrated. In this work, the purpose
of the study is to study the influence of interphase interaction on the dynamics of the
carrier medium of a gas suspension. A gas suspension with a large volumetric content of
the dispersed phase was considered. The flow was described in a channel with a narrowing.

1. Mathematical Model

The movement of the carrier medium is described by a system of Navier-Stokes
equations taking into account interphase force interaction and heat transfer [14-18|:

dp | O(pu)  O(pv)

ot | ox oy (1)

I(pu) 9 2 9 _ Jp
5 + ax(pu +p— Tex) + ay(puv Tay) = Fx—l—ozax, (2)
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Closing relations for equations (1)—(4):

d(pu) 8(pv))
+ .

p=(v=1(e—pu®+0%)/2), e = p(I + (u* +v%)/2), D = p (gu gZ)

ou 2 ov 2 ou Ov
TII_M(Q%_gD)’Tyy (Qa_y_gD)aTxy_Tyx—,u(a_y‘i‘%).

The dynamics of the dispersed phase is described by the equation of conservation of
the average density of the dispersed phase, the equations of conservation of momentum
components and the equation of energy conservation [7]:

Op1 | O(prur) | 9(p1v)

oo oy ?

8(%1:1) + ag(p u) + 88 (prusvy) = Fy — O‘g_iv (6)
8(pa1tvl) ag(/hulvl) + a%(ﬂlv%) =1y - O‘g_]y)’ (7)
a;tl + ai (e1u1) + %(6101) = Q- ®)

The index “1” refers to the physical quantities of the dispersed phase; variables without an
index describe changes in the physical parameters of the carrier medium. The following
notations are used in the equations: p is gas density, u, v are components of the gas
velocity vector V' = [u,v], e and T are energy and temperature of the carrier medium,
p is gas pressure. Here A, u, v are the coefficients of thermal conductivity, viscosity and
adiabatic constant for the carrier medium, I = RT'/(y — 1) internal energy of the carrier
medium (R is the gas constant ), 7,,, Ty, 7,y are components of the viscous stress tensor
of the carrier medium. For the dispersed phase, the following notations are used: o —
volumetric content of the dispersed phase, p; = apip — average density of the dispersed
phase, p;p — physical density of the dispersed phase material, u;, v; components of the
dispersed phase velocity vector V; = [u1,v1], e; and T} thermal energy and temperature of
the dispersed phase, e; = p;C,17, C, — heat capacity of the dispersed phase. The spatial
components of the vector of interphase momentum exchange F,, F, are determined by
expressions that include several forces of interaction between the carrier medium and
particles F, = Fog + Fon + Fyp, Fy = Fyg + Fya + Fy,. As an interphase exchange of
momentum, we took into account the aerodynamic drag force Fyq, Fyq, and the Archimedes
dynamic force and Fj 4, Fj, 4, and the force of the attached masses Fy,, Fyim [4]:

3o
Foa= @Cdp\/(u — )+ (v — 1) (u— ),
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The heat exchange of the carrier medium with the dispersed phase is described by the
following expression [7]:
Q = 6a\Nuy (T —Ty)/d>.

In the expressions for the aerodynamic drag force, C, is the drag coefficient of the
dispersed phase particle. All particles are assumed to be spherical in shape. Heat transfer
and momentum exchange between the components of a gas suspension are specified by
the following parameters [7]: relative Mach number M, relative Reynolds number Re,
relative Nusselt number Nu; and the Prandtl number Pr:

24 4

Ca = Cop(M)p(a), C§= Te + 705
1

+0.4,

—0.427
¢(My) =1+ eXp(_W>7 pla) = (1—a)™?,
1

Rey = dp|V = Vi|/u, My =|V =V,
Pr = Cp:u()‘)ila
Nuy = 2exp(—My) + 0.459Rel* Pro.

Here ¢, is the heat capacity of the gas. When determining the drag coefficient Cy, the
function ¢(a) takes into account the multiplicity of particles [7]. This mathematical
model does not take into account the collision of particles of the dispersed phase; the
mathematical model of the dynamics of a polydisperse gas suspension described above
describes the flows of inhomogeneous media in a wide range of relative Mach and Reynolds
numbers [7]: 0 < M; < 2,0 < Re; <2-10°.

2. Numerical Method

When modeling flow in an area with complex geometry, the Thompson method was
used [2,13,19]. To integrate the system of equations, a transition from physical coordinates
(x,y) to generalized coordinates (£,7n) was used x = z(&,n),y = y(&,n). The system
of equations was solved in generalized coordinates. The system of equations (1)—(8)
was integrated using the explicit finite-difference MacCormack method of second order
accuracy [2]. Let us consider a numerical algorithm using the example of a scalar nonlinear
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partial differential equation (9) for the function f, where a(f), b(f) c(f) are nonlinear
functions: of dalf) ob(f)
a

For the nonlinear equation (9), the numerical solution by the explicit finite-difference
MacCormack method on the nth time layer is written as follows [2]:

fiw = T t- A_f(ajJrllk s, ) - An (bjk+11 — by Y+ Atc]k ) (10)
" . " At , At
e =0.5(f1 + fir) —O.5A—£(ajk—a] %) _05A77( e — Uir_1) + 0.5Atck,. (11)

Here At,A¢, An steps in time variable and spatial directions. In order to suppress numerical
oscillations, a nonlinear correction scheme for the grid function (10), (11) was used [14,21].
Let Z7, be an arbitrary independent function on the n-th time layer at node j, k. Then
the correction algorithm would have the following form:

23 = Zl + K02} oy — 0251 jo ),
where Z7'7 is the adjusted function. This algorithm is executed when
(027 1 /9102 1 jag) <001 (027110102 3/2) <O.

n n n — n n n _ n
Here 077 )y ) = 2} = 23110251 po ke = Zak = 231 02 30k = 2o — Zf4aps Where
k is the correction coefficient. The size of the time step when implementing a numerical

algorithm is selected based on the Courant—Friedrichs-Levy condition [2].

3. Computer Implementation

Fig. 1. Schematic representation of the simulated process

The implementation of the program code in the GNU-FORTRAN language has
the following structure:
1) A finite-difference mesh is constructed.
2) The physical parameters of the phases are set.
3) The initial and boundary conditions for the carrier and dispersed phases are set.
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4) The value of the interfacial heat and force exchange values is determined.

5) The main computational cycle is implemented, transferring the dependent gas-dynamic
variables (gas, dispersed phase) to the next time step.

6) Nonlinear correction of grid functions is carried out. If necessary, the filtration
mechanism is activated.

7) Boundary conditions are set on a new temporary layer. A comparison of the results
of numerical calculations of the dynamics of a gas suspension using the described
computational complex with analytical solutions of the dynamics of an ideal gas and an
ideal equilibrium model of a gas suspension known from the literature is carried out in [18].
A study of the grid convergence of the numerical algorithm implemented in the software
package was carried out in [15,16]. On solid surfaces, homogeneous Dirichlet boundary
conditions were specified for the velocity components, and homogeneous Neumann
boundary conditions were specified for the remaining dynamic functions:

e(t,i,1) = e(t,i,2),e1(t,i,1) = ey (t,1,2),

e(t,i, No) = e(t,i, No — 1), e1(t, i, No) = ey (t, i, Ny — 1),
e(t,1,5) = e(t,2,j),e1(t, 1,5) = er(t, 2, ),

e(t, Ni,j) = e(t, N1 — 1,7),ei(t, N1, j) = er(t, N1 — 1, 7),

,p(t, i, No

p(taiaNQ - 1)7

p(taNl - 17j)7

), p( )
), p(t, N1, )
), p(t, i, No) = p(t,i, Ny — 1),
) = p(t,2,7), p(t, N1, 3) = p(t, Ny = 1, ),
), p1(t, i, No) = p1(t,i, Ny — 1),
), p1(t, N1, j) = pi(t, N1 — 1, 7),
w(t,i,1) = 0,uy(t,i,1) = 0,v(t,4,1) = 0,v1(¢,4,1) = 0,
u(t, i, No) = 0,uy(t,7, No) =0,
v(t,i, Ny) = 0,v1(t, i, Ny) = 0,
u(t, 1,j) = u(t,2,j),ui(t, 1,7) = wi(t, 2, ),
u(t, 1, 5) = v(t,2,5),vi(t, 1, j) = vi(t, 2, 5), u(t, N1, j) = wo,
uy(t, N1, j) = ui(t, Ny — 1,75),
o(t, N1, j) = v(t, Nt — 1, j), vi(t, N1, j) = vi(t, N1 — 1, ).

Number of nodes in the longitudinal direction Ni, number of nodes in the transverse
direction Ns.
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Fig. 2. Flowlines: a) in the carrier medium; b) in the dispersed phase

4. Calculation Result

Air with water particles suspended in it was considered as a gas suspension. Physical
density of the particle material p1p=1000 kg/m?3, heat capacity of the dispersed phase
— ¢4=4200 J/(kg-K), particle diameter d=2 pm, initial volumetric content of particles
ap=0.001. The initial density and temperature of the gas are p = 1.29 kg/m? and T' = 380
K, respectively. Channel length L = 1m, channel width H = 1 m. Angle a = w/4.
At the initial moment of time the longitudinal component of the gas velocity vector is
u = uy = 136 m/s, v = 0. At the exit from the channel the longitudinal gas velocity
was set u = ug = 136 m/s. The grid included N; = 200 along the x coordinate and
Ny =200 in the transverse direction, respectively (Fig. 1). When modeling, the following
parameters of the carrier phase were set: M = 29 - 1073 kg/mol is the molar mass of
air, thermal conductivity of the carrier medium A = 0.02553 W/(m-K), dynamic viscosity
p=172-10"°Pa/s, v = 1.4, R =8.31 J/(mol-K).
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Fig. 3. Spatial distribution of the average density of the dispersed phase

Dispersed particles are set in motion by moving gas. Thus, the dynamics of the
dispersed phase of the gas suspension is determined by the flow of the carrier medium.
The flow lines of the gas and dispersed phases of the gas suspension are similar.

Fig. 3 shows the distribution of the average density of the dispersed phase at t = 10 ms.
Near the channel outlet, a decrease in the average density of the dispersed phase is
observed; in the lower part of the channel, near the ledge, an increase in the average
density of the dispersed phase occurs.

Fig. 4 shows the spatial distribution of the modulus of velocity of a homogeneous gas
and the carrier medium of a gas suspension. Due to the interphase interaction modulus
of the flow velocity of the gas phase of the gas suspension reaches lower values in a
heterogeneous medium in comparison.

Fig. 5 shows the spatial distribution of pressure in a homogeneous gas, and the pressure
of the gas phase of a gas suspension. In a homogeneous gas, the pressure reaches higher
values than in a gas suspension. Both in a homogeneous gas and in the gas phase of a gas
suspension, the highest pressure is achieved near the inclined surface of the channel.

In Fig. 6-8 show the spatial distributions of the gas velocity module, the longitudinal
component of the velocity and the transverse component of the gas velocity. The
quantitative value of the spatial components of the gas phase of a gas suspension is less
important than in a homogeneous medium. Near the wedge (narrowing of the channel),
the velocity of the homogeneous gas and the gas phase of the gas suspension reaches its
lowest value.

In Fig. 9 and Fig. 10 there are spatial distributions of pressure and gas density for
calculations of gas suspension and homogeneous gas flows. In numerical calculations, an
increase in gas pressure and density is observed when flowing around a wedge. Which can
be explained by the formation of an “oblique shock” of compaction. Analytical results for
modeling an oblique shock wave for an ideal inviscid gas are described in the monograph [1].
In a gas suspension, the gas compaction reaches lower values than in a homogeneous
medium, and therefore, in general, the pressure of the gas phase of the gas suspension
reaches lower values than in a homogeneous gas. In a gas suspension, the pressure is
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Fig. 4. Distribution of the modulus of velocity: a) of a homogeneous gas; b) of the carrier
phase of the gas suspension

88.39% of the pressure in a homogeneous medium. The work [1] describes an analytical
solution for changing the gas density (12), (13) when a flow of inviscid gas overcomes a
step with an angle «v at the top. Equation (12) was integrated by Newton’s finite-difference
method [22].

sin?(8) — &

sin?(8) + 5 +

1 in2(B) 4
pazp*< 2_81 .(B)"* ) (13)

Here p, gas density before flowing around the wedge, gas density after flowing around the
wedge pq, Uy is a longitudinal gas velocity before flowing around the wedge. The density

ctg (), (12)
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Fig. 5. Spatial distribution of pressure: a) of a homogeneous gas; b) of the carrier phase
of the gas suspension
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Fig. 6. Spatial distribution of the gas velocity modulus along the x axis (y = H/2), curve
1 is a homogeneous gas, curve 2 is a gas suspension
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Fig. 7. Spatial distribution of the 2 component of gas velocity along the z axis (y = H/2),
curve 1 is a homogeneous gas, curve 2 is a gas suspension
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Fig. 8. Spatial distribution of the y-component of gas velocity along the z axis (y = H/2),
curve 1 is a homogeneous gas, curve 2 is a gas suspension
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Fig. 9. Spatial distribution of gas pressure along the x axis (y = H/2), curve 1 is a
homogeneous gas, curve 2 is a gas suspension

in the numerical solution for a gas suspension is pys/p,=94.36% of the analytical solution,
the gas density in the numerical solution for a homogeneous gas is ppg/p,=101.4%.

Conclusion

The work numerically simulated the flow of a gas suspension in a channel of varying
cross-section. The dynamics of the gas suspension was simulated by a mathematical
model that implements the continuum technique for modeling flows of inhomogeneous
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Fig. 10. Spatial distribution of gas density along the z axis (y = H/2), curve 1 is a
homogeneous gas, curve 2is a gas suspension, straight line—analytical solution for inviscid
gas

media. A comparison has been made of numerical calculations of the dynamics of a gas
suspension and the flow described by the single-phase Navier-Stokes equation. Calculations
demonstrate that the flow intensity in a gas suspension is significantly less than the flow
intensity in a homogeneous medium. The revealed pattern can be explained by interfacial
interaction. The calculation results can be used in the calculations of devices and industrial
technologies in which flows of gas-dispersed media occur.

The work was carried out within the framework of the state assignment of the Federal
Research Center of the Kazan Scientific Center of the Russian Academy of Sciences.
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YN CJIEHHOE NCCJIEJJOBAHUE BJINAHN A
MEXK®A3HOI'O BBAUMOJENCTBUA HA TUHAMUKY
T'A30BOI ®A3LI TASOB3BECU B KOCOM CKAYKE
YIIJIOTHEHNA

. A. Tyxmaxos, QenepalibHblil nccaem0BaTeIbCKNN 1eHT KazaHCKuit Hay IHBIH EHTD
PAH, r. Kazanb, Poccuiickass ®eepariust

B nannoit pabore mpejcraBieHa YUCIEHHAS MOJENb JUHAMUAKHI Ma30B3BECH B KAHAJE C
U3MeHsIoNIeics reomerpueit. st MogeIMpoBaHust JMHAMUKY Ta30B3BECH TPUMEHSLIACH KOH-
TUHyaJIbHAS METOJINKA OIMCAHUS IMHAMUKYU HEOHOPOIHOI cpeibl. Hecyiast cpega onuchi-
BaJIaCh KaK BSA3KUIl C2KUMAaEMbIil 1 TeIJIOIPOBOIHBI ra3. Jjist Hecy1eil cpeibl U JJUCIIePCHOI
KOMIIOHEHTHI PEIIaJIacCh IOJIHAS THIPOINHAMUYIECKAs] CHCTEMa YPaBHEHU [IMHAMUKI BKJIIO-
Jarorasi B cebsl ypaBHEHUsI COXPAHEHUsI INIOTHOCTH, Y PABHEHUST COXPAHEHUST ITPOCTPAHCTBEH-
HBIX COCTABJISIIONINX UMITY/Ibca U dHeprun. Me:kdas3Hbiii 0OMeH UMITyIbca BKIIOYAT B CeOsT
JMHAMUYIECKYIO CHIy Apxumesa, CUIy IIPUCOEIMHEHHBIX MACC U CHJIY a’9POINHAMUIECKOIO
conporupjieHnst. TakxKe yIUTBIBAJICS TEIIOOOMEH MeXK]ly Hecyleil Cpejioil M JIMCIIePCHOI
dazoii. Teuenne HEOTHOPOIHON CPEBI U OIHOPOIHOTO r'a3a OINUCHIBAJIOCH B KaHAJE C Pac-
mupenueM. Jjisi onucaHus JUHAMUKE CILIOIIHONW CpeJbl B ODJIACTH € HEIPSIMOYTOJIBLHOM
dOPMBI OCYIIECTBIIAICS TTEpexXo ], K 0000IEeHHBIM KoopauHaTaM. s nHTerpupoBanust Cr-
CTeMbI ypPaBHEHUIT IPUMEHSIJICS KOHEIHO-Pa3HOCTHBIM MeTo1, Mak-KopMaka Broporo mopsii-
Ka TOYHOCTHU. [ljIsi 1OaB/IeHns] 9UC/IEHHBIX OCIUJLISIUI TPUMEHSIJIACh CXeMa HeJIMHENHOM
KOPPEKIINU YHCJIEHHOTO pellleHns. BhLIO MPOBEIEHO COMIOCTABIEHNE PE3Y/ILTATOB PACIETOB,
[IPOBEJIEHHBIX JIJIsT KOHTUHYAJIHHON MOJIEIBIO JUHAMUKY MA30B3BECH U DEIIEHUS IBY XMEPHOI
cucrembl ypapaenuit Hapbe—CToKca ¢ aHAJOTHYIHBIM TPAHUYHBIMEU YCJOBUSIMU. B pesyib-
TaTe YUCJEHHBIX PACYeTOB OBLIO BBISBJIEHO, YTO Mexk(da3HOe B3aNMOJEHCTBAE OKA3bIBAET
CyIeCTBEHHOE BJIMsIHIE Ha JUHAMWKY HecyIleil cpeibl B ra3oB3pecu. /uHaMuka HecyIei
CpeJibl B ra30B3BECHU CYIIECTBEHHBIM 00Pa30M OTJIMYAETCS OT JUHAMUKYM OJHOPOIHOTO I'a3a.
3a cuer MeK(A3HOTO B3ANMOEHCTBIS MHTEHCUBHOCTD T€UEHUs HECYIIEH CpeJIbl B Ia30B3Be-
CH HUKe, 9YeM B OJHOPOJHOM rasze.

Karouesvie cao6a: A6HAA KOHEUHO-PA3ZHOCTVHAA CTEMA; KORMUHYAAOHAA MEMOIUKA MO-
deauposarus; mestcgasnoe saaumodeticmsue; ypasuernue Hasve—Cmokca; 2a30638eco.
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