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Existence of solution theorems are obtained for stochastic di�erential inclusions given
in terms of the so-called current velocities (symmetric mean derivatives, a direct analogs
of ordinary velocity of deterministic systems) and quadratic mean derivatives (giving
information on the di�usion coe�cient) on the �at n-dimensional torus. Right-hand sides
in both the current velocity part and the quadratic part are set-valued but satisfy the
conditions, under which they have smooth selectors. Then we can reduce the inclusion to
an equation with current velocities for which existence of solutions is known in the case of
smooth right-hand side.
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Introduction

The notion of mean derivatives was introduced by Edward Nelson [8�10] for the needs
of stochastic mechanics (a version of quantum mechanics). The equation of motion in
this theory (called the Newton � Nelson equation) was the �rst example of equations in
mean derivatives. Later it turned out that the equations in mean derivatives arose also
in many other branches of science (mechanics, hydrodynamics, Navier � Stokes vortices,
gauge �elds, economics, etc.).

Nelson introduced forward and backward mean derivatives while only their half-sum,
symmetric mean derivative called current velocity, is a direct analog of ordinary velocity
for deterministic processes. In [2] another mean derivative called quadratic, is introduced.
It gives information on the di�usion coe�cient of the process and using Nelson's and
quadratic mean derivatives together, one can in principle recover the process from its
mean derivatives.

Since the current velocities are natural analogs of ordinary velocities of deterministic
processes, investigation of equations and especially inclusions with current velocities is
very much important for applications since there are a lot of models of various physical,
economical etc. processes based on such equations and inclusions.

Di�erential inclusions with current velocities arise in natural problems of applications
in the same way as ordinary di�erential inclusions originate from ordinary di�erential
equations. Here we should point out two main cases. First, in equations with control and
feedback, at every point (t, x) of extended phase space one have to consider all values of
the right-hand side for all possible values of controlling parameter. Thus, the right-had
side becomes set-valued and the equation turns into inclusion.

The second case arises if the right-hand side of equation is "very bad" � neither
continuous nor measurable � that often arise in description of motion in a very complicated
medium. In this case the equation has no classical solution but there is a trick suggested
probably by A.F. Filippov, that transforms the equation into inclusion with upper semi-
continuous right hand side with convex images. Thus, the investigation of di�erential
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inclusions with mean derivatives is important for applications and it is a natural extension
of the domain of applications for this theory.

In [2] an existence theorem for di�erential inclusions with current velocities having
single-valued part for quadratic mean derivative, is obtained under some very strong
conditions. In this paper we deal with more realistic situation. Both current velocity and
quadratic parts of the right-hand side are set-valued. We use some criteria for existence of
smooth selectors of set-valued mappings in order to reduce the inclusion to an equation
with current velocities, for which existence of solutions is proved in [2] in the case of smooth
right-hand side.

To avoid some technical di�culties we consider the inclusions on the �at n-dimensional
torus T n. This means that the torus is considered as a quotient space of Rn relative to
the integral lattice and that the Riemannian metric on T n is inherited from the Euclidean
metric in Rn. Everywhere below we use the operations of addition and subtraction of
points and integration in T n as in Rn modulo factorization relative to the integral lattice.
The construction and notation of stochastic integrals and stochastic di�erential equations
on T n are the same as in Rn because of the use of Euclidean metric.

The detailed exposition of preliminary notions and facts used in the paper, can be
found in [7].

Everywhere in the paper we use Einstein's convention of summation relative to a
shared upper and lower index (see, e.g., [7]).

1. Preliminaries on Mean Derivatives

Consider the n-dimensional �at torus T n. We shall deal with stochastic processes in
T n given on a certain probability space (Ω,F ,P), t ∈ [0, T ] ⊂ R.

Denote by Pξ
t the sub-σ-algebra of F generated by preimages of Borel sets from T n

by all mappings ξ(s) : Ω → Rn for 0 ≤ s ≤ t; Pξ
t is called the "past" for ξ(t).

Denote by N ξ
t the sub-σ-algebra of F generated by preimages of Borel sets from T n

by the mapping ξ(t) : Ω → T n; N ξ
t is called the "present" for ξ(t).

The σ-subalgebras Pξ
t and N ξ

t for all t are supposed to be complete, i.e., containing
all sets of probability zero. Obviously N ξ

t is a sub-σ-algebra in Pξ
t .

For the sake of convenience we denote by Eξ
t the conditional expectation E(·|N ξ

t ) with
respect to N ξ

t for ξ(t).
As in [8�10], we introduce the following notions of forward and backward mean

derivatives.

De�nition 1. (i) The forward mean derivative Dξ(t) of ξ(t) at the time instant t is an
L1 random element of the form

Dξ(t) = lim
△t→+0

Eξ
t

(
ξ(t+△t)− ξ(t)

△t

)
, (1)

where the limit is supposed to exist in L1(Ω,F ,P) and △t → +0 means that △t tends to
0 and △t > 0.

(ii) The backward mean derivative D∗ξ(t) of ξ(t) at t is the L1-random element

D∗ξ(t) = lim
∆t→+0

Eξ
t

(
ξ(t)− ξ(t−∆t)

∆t

)
, (2)
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where (as well as in (i)) the limit is assumed to exist in L1(Ω,F ,P) and ∆t → +0 means
that ∆t → 0 and ∆t > 0.

As usual in the machinery of conditional expectation (see, e.g., [11]), there exist
Borel measurable vector �elds aξ(t,m) and aξ∗(t,m) such that Dξ(t) = aξ(t, ξ(t)) and
D∗ξ(t) = aξ∗(t, ξ(t)), respectively.

De�nition 2. The derivative DS =
1

2
(D +D∗) is called the symmetric mean derivative.

The derivative DA =
1

2
(D −D∗) is called the antisymmetric mean derivative.

Consider the vectors vξ(t, x)=
1

2

(
aξ(t, x)+aξ∗(t, x)

)
and uξ(t, x)=

1

2

(
aξ(t, x)−aξ∗(t, x)

)
.

De�nition 3. vξ(t) = vξ(t, ξ(t)) = DSξ(t) is called the current velocity of the process ξ(t);
uξ(t) = uξ(t, ξ(t)) = DAξ(t) is called the osmotic velocity of the process ξ(t).

The physical meaning of current velocity is a direct analog of the ordinary velocity of
a deterministic process. The osmotic velocity measures how fast the randomness increases.
This interpretation becomes clear from the following features of vξ and uξ (see [10]).

Consider an autonomous smooth �eld of non-degenerate linear operators
A(t, x) : R× Rn → Rn, t ∈ R and x ∈ T n. Suppose that ξ(t) is a di�usion type process
whose di�usion integrand is A(t, ξ(t)). Then its di�usion coe�cient A(t, x)A∗(t, x) is a
smooth �eld of symmetric positive de�nite (2, 0)-tensors with matrices α(t, x) = (αij(t, x)).
Since all those matrices are non-degenerate, the �eld of inverse matrices (αij(t, x)) exists
and is smooth and at any (t, x) the matrix (αij)(t, x) is symmetric and positive de�nite.
Thus it de�nes a new Riemannian metric (symmetric positive de�nite (0, 2)-tensor �eld)
αt(·, ·) = αijdx

i ⊗ dxj on the level surfaces t = const. Consider the Riemannian volume
form of this Riemannian metric Λαt =

√
det(αij)dx

1∧dx2∧· · ·∧dxn on those level surfaces.
Denote by ρξ(t, x) the probability density of ξ(t) with respect to the volume form

dt ∧ Λα =
√

det(αij)dt ∧ dx1 ∧ dx2 ∧ · · · ∧ dxn on [0, T ] × T n, i.e., for any continuous
bounded function f : [0, T ]× T n → R the relation

T∫
0

E(f(t, ξ(t)))dt =

T∫
0

∫
Ω

f(t, ξ(t))dP

 dt =

T∫
0

∫
Rn

f(t, x)ρξ(t, x)Λαt

 dt (3)

holds. Then under the assumption that ρξ(t, x) nowhere equals zero

uξ(t, x) =
1

2

∂

∂xj
(αij(t, x)ρξ(t, x))

ρξ(t, x)

∂

∂xi
, (4)

where (αij) is the matrix of operator AA∗. Formula (4) is proved in [4].
For vξ(t, x) and ρξ(t, x) the so called equation of continuity

∂ρξ(t, x)

∂t
= −Divt(v

ξ(t, x)ρξ(t, x)) (5)

holds, where Divt denotes divergence with respect to the Riemannian metric αt(·, ·) on
the level surface t = const. Formula (5) is proved in [2].
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Following [2] we introduce the di�erential operatorD2 that di�erentiates an L1 random
process ξ(t), t ∈ [0, T ] according to the rule

D2ξ(t) = lim
△t→+0

Eξ
t (
(ξ(t+△t)− ξ(t))(ξ(t+△t)− ξ(t))∗

△t
), (6)

where (ξ(t+△t)−ξ(t)) is considered as a column vector (vector in Rn), (ξ(t+△t)−ξ(t))∗

is a row vector (transposed, or conjugate vector) and the limit is supposed to exists in
L1(Ω,F ,P). We emphasize that the matrix product of a column on the left and a row on the
right is a matrix with rank 1 but after passing to limit and taking conditional expectation
D2ξ(t) becomes a symmetric semi-positive de�nite matrix function on [0, T ]×Rn (in many
cases positive de�nite). We call D2 the quadratic mean derivative. It takes values in the
set of (2, 0)-tensors having symmetric positive semi-de�nite matrices.

As mentioned above, the current velocity is analogous to ordinary velocity for a non-
random process. Thus, from the physical point of view, it is an important problem to study
equations and inclusions with current velocities.

Let v(t,m) be a vector �eld and α(t,m) be a symmetric positive semi-de�nite (2, 0)-
tensor �eld on T n. The system {

DSξ(t) = v(t, ξ(t)),
D2ξ(t) = α(t, ξ(t))

(7)

is called the �rst order di�erential equation with current velocities.
Note that equation (7) on the �at torus T n can be considered as an equation on Rn

periodic in space variables.

De�nition 4. We say that (7) on T n has a solution on [0, T ] with initial condition
ξ(0) = ξ0 if there exists a probability space (Ω,F ,P) and a process ξ(t) given on (Ω,F ,P)
and taking values in T n such that ξ(0) = ξ0 and for almost all t ∈ [0, T ] equation (7) is
satis�ed P-a.s. by ξ(t).

Theorem 1. Let v : [0, T ] × T n → Rn and α : [0, T ] × T n → S+(n) be smooth (so α
determines the Riemannian metric αt(·, ·) on T n, introduced above). Let ξ0 be a random
element with values in T n whose probability density ρ0 with respect to the volume form
Λα of α(·, ·) on T n (see above) is smooth and nowhere equal to zero. Then for the initial
condition ξ(0) = ξ0 equation (7) has a solution that is well-de�ned on the entire interval
t ∈ [0, T ].

Theorem 1 is a simple corollary to [2, Theorem 3]. Here we use the fact that on
the compact manifold T n the right-hand sides of (7) are uniformly bounded and so the
hypothesis of [2, Theorem 4.1] is ful�lled.

Introduce p0 = log ρ0 and consider p(t,m) = log ρξ(t,m) where ρξ(t,m) is the density
(3) corresponding to the solution ξ(t) of (7). It is shown in [2, Theorem 3] that p(t,m) is
well-posed and takes the form

p(t,m) = p0(g−t(m))−
∫ t

0

(Divs v)(s, gs(g−t(m)) ds, (8)

where Divt is the divergence with respect to αt(·, ·) on the level surface t = const and gt
is the �ow of smooth vector �eld v(t,m).
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2. Inclusions with Current Velocities

Let v(t,m) be a set-valued vector �eld and α(t,m) a set-valued symmetric positive
semi-de�nite (2, 0)-tensor �eld on T n. The system of the form{

DSξ(t) ∈ v(t, ξ(t)),
D2ξ(t) ∈ α(t, ξ(t))

(9)

is called a �rst order di�erential inclusion with current velocities. The notion of solution
of (9) is quite analogous to that from De�nition 4.

Theorem 2. Let v(t,m) be a set-valued uniformly bounded vector �eld on T n that has a
smooth selector. Let also α(t,m) be a (2, 0)-tensor �eld having a smooth selector as well
and taking values in S+(n). In addition, let ξ0 be a random element with values in T n

whose density ρ0 is smooth and nowhere equal to zero. Then for initial condition ξ(0) = ξ0
inclusion (9) has a solution that exists on the entire interval t ∈ [0, T ].

Proof.
Denote the smooth selector of α(m) by α(t,m) and of v(t,m) by v(t,m). It is evident

that the density of ξ0 with respect to the volume form of Riemannian metric constructed
from α(t,m) as above, is nowhere equal to zero. Then by Theorem 1 equation{

DSξ(t) = v(t, ξ(t)),
D2ξ(t) = α(t, ξ(t))

has a solution well-posed on t ∈ [0, T ] and it is a solution of (9) we are looking for.

2

Now we can apply the criteria for existence of smooth selectors for set-valued mappings
to obtain new existence theorems for inclusion (9).

For a solid closed convex set A and vector V in Rn let us introduce the so-called support
function Ψ(A, V ) = sup

y∈A
(y, V ) where (·, ·) is inner product. Consider the set-valued vector

�eld v(t,m) on T n whose values are solid, convex and closed. Since the tangent bundle
of torus is trivial, we can deal with the constant vector �eld V on the torus. Denote by
Ψ(t,m, V ) that support function of Ψ(v(t,m), V ). Let also the (2, 0)-tensor �eld α(t,m)
on T n has values solid, convex and closed. Since α(t,m) takes values in S+(n) ⊂ L(Rn,Rn)
that is a linear space, we can construct the support function Ψ1(t,m, V1) for α(t,m) by
complete analogy with the above scheme where V1 is a constant (2, 0)-tensor �eld on T n.

Assumption 1. For every V and V1 functions Ψ(t,m, V ) and Ψ1(t,m, V1) are smooth.

Theorem 3. Let v(t,m) be a continuous uniformly bounded set-valued vector �eld on
T n having solid convex and closed values and let also α(t,m) be a continuous uniformly
bounded set-valued (2, 0)-tensor �eld on T n such that its values are solid convex and closed.
Suppose that Assumption 1 is ful�lled. In addition, let a random element ξ0 with values
in T n has density that equals zero nowhere. Then for initial condition ξ(0) = ξ0 inclusion
(9) has a solution that is well-posed on the entire interval t ∈ [0, T ].
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Proof.
In [1] it is shown that under Assumption 1 the continuous set-valued uniformly

bounded vector �eld with closed convex solid values has a smooth selector. Thus, the
statement of Theorem follows from Theorem 2.

2

Now let us consider the case where the values of v(t,m) and α(t,m) are not solid.
Instead we suppose that every image of v(t,m) (of α(t,m)) belongs to a subspace in
TmT n (a subspace in the space of (2, 0) tensors at m, respectively) and those subspaces
have constant dimension k < n (k1 < n, respectively) independent of m ∈ T n. If we
associate with every m ∈ T n the above-mentioned subspace at m, we obtain a mapping
Φ form T n to the manifold of a�ne subspaces with dimension k in tangent spaces to
TmT n (mapping Φ1 to the manifold of a�ne subspaces in the spaces of (2, 0)-tensors,
respectively).

Assumption 2. Mappings Φ and Φ1 are smooth.

Theorem 4. Let v(t,m) (α(t,m)) be a continuous uniformly bounded set-valued vector
�eld ((2, 0)-tensor �eld with values in S+(n)) on T n such that every image v(t,m) belongs
to a subspace in TmT n (every image α(t,m) belongs to a subspace in the space of (2, 0)-
tensors, respectively) and those subspaces have constant dimension k < n (k1 < n,
respectively) independent of m ∈ T n. Let also Assumption 2 be ful�lled. Then for initial
condition ξ(0) = ξ0 where the density of ξ0 is smooth and nowhere equal to zero, inclusion
(9) has a solution that is well-posed on the entire interval t ∈ [0, T ].

Proof.
In [5] it is shown that in the case under Assumption 2, the continuous uniformly

bounded vector �eld with closed convex images has a smooth selector. Thus, the statement
of Theorem follows from Theorem 2.

2

In the case where the right-hand side of (9) is not continuous but upper or lower
semicontinuous, we have to construct smooth ε-approximations in the former case and
smooth selectors in the latter case (see [3]). Taking those approximations, we construct
equations with current velocities of (7) type and after that we have to prove that the
solutions of the sequence of equations converge to the solution of (9). The following
Theorem can be a useful tool in this case.

Consider a sequence of equations of (7) type on T n whose right-hand sides are smooth
and uniformly bounded for all k by the same constant. For k-th equation denote by µk

the measure on the space of continuous paths (C0([0, T ], T n), C) (where C is the σ-algebra
generated by cylinder sets) corresponding to the solution ξk(t) of the k-th equation.

Theorem 5. The set of measures µk on (C0([0, T ], T n), C) is weakly compact.

Proof.
First of all, note that since all processes ξk(t) take values in the compact torus, all

expectations Eξk(t) are uniformly bounded.
In [2], on the basis of Hauss decomposition (see [12]), every matrix α ∈ S+(n) is

represented in the form α = ζδζ∗ where ζ is a lower-triangle matrix with units on the
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diagonal, ζ∗ is its transposed matrix, i.e., an upper-triangle matrix with units on the
diagonal, and δ is a diagonal matrix whose angular minors (note that they all a positive)
coincide with those of α. Denote the diagonal elements of δ by δ1, . . . δn. Then the matrix
A = ζ

√
δ where

√
δ is the diagonal matrix with

√
δ1, . . . ,

√
δn on the diagonal, is such

that α = AA∗. If we deal with a smooth �eld αk(t,m), t ∈ R and m ∈ T n, of the above-
mentioned approximations, the corresponding matrices Ak(t,m) are also smooth. Since
αk(t,m) are uniformly bounded by the same constant for all k, all Ak(t,m) have the same
property.

Specify two real numbers 0 ≤ s < t ≤ T with small di�erence t−s. Then for any k the

increment of ξk on [s, t] is approximated by vk(
s+ t

2
)(t−s)+Ak(s)(w(t)−w(s)). Consider

E
(
(vk(

s+ t

2
)(t−s)+Ak(s)(w(t)−w(s)))(vk(

s+ t

2
)(t−s) +Ak(s)(w(t)−w(s)))∗

)
. Since vk

and Ak are uniformly bounded for all k by a unique constant, one can easily see that among
the items in the obtained expression only αk(t−s) is in�nitesimal of the same order as t−s
while the other items are in�nitesimals of a higher order. Hence there exists a constant
h1 such that if the di�erence t− s is small enough, the above-mentioned expression is not
greater than h1(t − s). By integration one can show that there exists a constant h > 0
depending on T and on the constant that bounds the norms of vk and αk, such that for
any 0 ≤ t1 < t2 ≤ T and every k the inequality E(ξk(t2) − ξk(t1))

4 < h(t2 − t1)
2 holds.

Now the statement of Theorem follows from [6, Theorem 2 �4 of Chapter VI].

2
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Î ÑÒÎÕÀÑÒÈ×ÅÑÊÈÕ ÄÈÔÔÅÐÅÍÖÈÀËÜÍÛÕ

ÂÊËÞ×ÅÍÈßÕ Ñ ÒÅÊÓÙÈÌÈ ÑÊÎÐÎÑÒßÌÈ

Þ.Å. Ãëèêëèõ, À.Â. Ìàêàðîâà

Ïîëó÷åíû òåîðåìû ñóùåñòâîâàíèÿ ðåøåíèé ñòîõàñòè÷åñêèõ äèôôåðåíöèàëüíûõ
âêëþ÷åíèé, çàäàííûõ â òåðìèíàõ òàê íàçûâàåìûõ òåêóùèõ ñêîðîñòåé (ñèììåòðè÷å-
ñêèõ ïðîèçâîäíûõ â ñðåäíåì, ïðÿìûõ àíàëîãîâ îáû÷íûõ ñêîðîñòåé äåòåðìèíèðîâàí-
íûõ ñèñòåì) è êâàäðàòè÷íûõ ïðîèçâîäíûõ â ñðåäíåì (äàþùèõ èíôîðìàöèþ î êîýôôè-
öèåíòå äèôôóçèè) íà ïëîñêîì n-ìåðíîì òîðå. Ïðàâûå ÷àñòè è äëÿ òåêóùåé ñêîðîñòè,
è äëÿ äëÿ êâàäðàòè÷íîé ïðîèçâîäíîé ìíîãîçíà÷íû è óäîâëåòâîðÿþò óñëîâèÿì, ïðè
êîòîðûõ îíè èìåþò ãëàäêèå ñåëåêòîðû. Çàòåì âêëþ÷åíèå ñâîäèòñÿ ê óðàâíåíèþ ñ òå-
êóùèìè ñêîðîñòÿìè, äëÿ êîòîðîãî òåîðåìà ñóùåñòâîâàíèÿ ðåøåíèÿ èçâåñòíà â ñëó÷àå
ãëàäêîé ïðàâîé ÷àñòè.

Êëþ÷åâûå ñëîâà: ïðîèçâîäíûå â ñðåäíåì; òåêóùèå ñêîðîñòè; äèôôåðåíöèàëüíûå

âêëþ÷åíèÿ.
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