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Existence of solution theorems are obtained for stochastic differential inclusions given
in terms of the so-called current velocities (symmetric mean derivatives, a direct analogs
of ordinary velocity of deterministic systems) and quadratic mean derivatives (giving
information on the diffusion coefficient) on the flat n-dimensional torus. Right-hand sides
in both the current velocity part and the quadratic part are set-valued but satisfy the
conditions, under which they have smooth selectors. Then we can reduce the inclusion to
an equation with current velocities for which existence of solutions is known in the case of
smooth right-hand side.
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Introduction

The notion of mean derivatives was introduced by Edward Nelson [8-10| for the needs
of stochastic mechanics (a version of quantum mechanics). The equation of motion in
this theory (called the Newton — Nelson equation) was the first example of equations in
mean derivatives. Later it turned out that the equations in mean derivatives arose also
in many other branches of science (mechanics, hydrodynamics, Navier — Stokes vortices,
gauge fields, economics, etc.).

Nelson introduced forward and backward mean derivatives while only their half-sum,
symmetric mean derivative called current velocity, is a direct analog of ordinary velocity
for deterministic processes. In [2] another mean derivative called quadratic, is introduced.
It gives information on the diffusion coefficient of the process and using Nelson’s and
quadratic mean derivatives together, one can in principle recover the process from its
mean derivatives.

Since the current velocities are natural analogs of ordinary velocities of deterministic
processes, investigation of equations and especially inclusions with current velocities is
very much important for applications since there are a lot of models of various physical,
economical etc. processes based on such equations and inclusions.

Differential inclusions with current velocities arise in natural problems of applications
in the same way as ordinary differential inclusions originate from ordinary differential
equations. Here we should point out two main cases. First, in equations with control and
feedback, at every point (¢,z) of extended phase space one have to consider all values of
the right-hand side for all possible values of controlling parameter. Thus, the right-had
side becomes set-valued and the equation turns into inclusion.

The second case arises if the right-hand side of equation is "very bad" — neither
continuous nor measurable — that often arise in description of motion in a very complicated
medium. In this case the equation has no classical solution but there is a trick suggested
probably by A.F. Filippov, that transforms the equation into inclusion with upper semi-
continuous right hand side with convex images. Thus, the investigation of differential
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inclusions with mean derivatives is important for applications and it is a natural extension
of the domain of applications for this theory.

In [2] an existence theorem for differential inclusions with current velocities having
single-valued part for quadratic mean derivative, is obtained under some very strong
conditions. In this paper we deal with more realistic situation. Both current velocity and
quadratic parts of the right-hand side are set-valued. We use some criteria for existence of
smooth selectors of set-valued mappings in order to reduce the inclusion to an equation
with current velocities, for which existence of solutions is proved in [2] in the case of smooth
right-hand side.

To avoid some technical difficulties we consider the inclusions on the flat n-dimensional
torus 7. This means that the torus is considered as a quotient space of R™ relative to
the integral lattice and that the Riemannian metric on 7" is inherited from the Euclidean
metric in R". Everywhere below we use the operations of addition and subtraction of
points and integration in 7" as in R” modulo factorization relative to the integral lattice.
The construction and notation of stochastic integrals and stochastic differential equations
on 7" are the same as in R" because of the use of Euclidean metric.

The detailed exposition of preliminary notions and facts used in the paper, can be
found in |7].

Everywhere in the paper we use Einstein’s convention of summation relative to a
shared upper and lower index (see, e.g., [7]).

1. Preliminaries on Mean Derivatives

Consider the n-dimensional flat torus 7". We shall deal with stochastic processes in
T" given on a certain probability space (Q2, F,P), t € [0,T] C R.

Denote by Pf the sub-o-algebra of F generated by preimages of Borel sets from 7"
by all mappings £(s) : Q@ — R" for 0 < s < ¢t; P¢ is called the "past" for (t).

Denote by NVF the sub-c-algebra of F generated by preimages of Borel sets from 7"
by the mapping £(t) : Q — T NF is called the "present" for (1).

The o-subalgebras Pf and ./\/;tf for all ¢t are supposed to be complete, i.e., containing
all sets of probability zero. Obviously ./\/f is a sub-o-algebra in Pf .

For the sake of convenience we denote by E¢ the conditional expectation E (|/\/f) with
respect to N7 for £(t).

As in [8-10], we introduce the following notions of forward and backward mean
derivatives.

Definition 1. (i) The forward mean derivative DE(t) of £(t) at the time instant t is an
Ly random element of the form

DE(t) = lim Ef (g(HAt)_f@), (1)

At—+0 YAN

where the limit is supposed to exist in L1(Q2, F,P) and At — +0 means that At tends to
0 and At > 0.
(i1) The backward mean derivative D.£(t) of £(t) at t is the Li-random element

é(t)—é(t—ﬁt)>

A7 (2)

At—+0

D,&(t) = lim Ef(
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where (as well as in (i)) the limit is assumed to exist in L' (2, F,P) and At — +0 means
that At — 0 and At > 0.

As usual in the machinery of conditional expectation (see, e.g., [11]), there exist
Borel measurable vector fields a®(¢,m) and a$(t,m) such that DE(t) = a*(t,£(¢)) and
D,E(t) = aS(t,&(t)), respectively.

1
Definition 2. The derivative Dg = 3 (D + D,) is called the symmetric mean derivative.

1
The deriwative Dy = §(D — D,) is called the antisymmetric mean derivative.

1 1
Consider the vectors v*(t, )= 3 (af(t, ) +al(t,z)) and us(t, x) = 5 (af(t, z)—al(t,z)).

Definition 3. v°(t) = v5(t,£(t)) = Ds&(t) is called the current velocity of the process £(t);
ut(t) = us(t, £(t)) = DAE(t) is called the osmotic velocity of the process &(t).

The physical meaning of current velocity is a direct analog of the ordinary velocity of
a deterministic process. The osmotic velocity measures how fast the randomness increases.
This interpretation becomes clear from the following features of v¢ and u® (see [10]).

Consider an autonomous smooth field of non-degenerate linear operators
A(t,z) :RxR" - R" ¢t € R and z € T". Suppose that £(¢) is a diffusion type process
whose diffusion integrand is A(t,£(t)). Then its diffusion coefficient A(t,z)A*(¢,x) is a
smooth field of symmetric positive definite (2, 0)-tensors with matrices a(t, z) = (a(t, x)).
Since all those matrices are non-degenerate, the field of inverse matrices (oy;(t,z)) exists
and is smooth and at any (¢, z) the matrix («;;)(¢, ) is symmetric and positive definite.
Thus it defines a new Riemannian metric (symmetric positive definite (0,2)-tensor field)
(-, +) = ai;dz' ® da? on the level surfaces ¢ = const. Consider the Riemannian volume
form of this Riemannian metric A,, = \/det(ay;)dzt Adz? A- - - Adz™ on those level surfaces.

Denote by p*(t,z) the probability density of £(¢) with respect to the volume form
dt A A, = /det(j)dt A dz' Adz®* A -+ Ada™ on [0,T] x T™, ie., for any continuous
bounded function f:[0,7] x 7" — R the relation

T T T

[Euweona= [ | [reema|a= [ [reofeon)a @

0 0

holds. Then under the assumption that p®(¢, 7) nowhere equals zero

(O‘ij (tv 'r)pf (t7 :I?)) 0
%7 (4)

Q

I

1
3 ——
witho) =3 pE(t, )

where (/) is the matrix of operator AA*. Formula (4) is proved in [4].
For v%(t,z) and p®(t, z) the so called equation of continuity

Op*(t, x)
ot

holds, where Div; denotes divergence with respect to the Riemannian metric ay(-,-) on
the level surface ¢t = const. Formula (5) is proved in [2].

= —Divt(?ﬁ(t,l‘)pg(t,:}j)) (5)
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Following [2] we introduce the differential operator D, that differentiates an L; random
process £(t), t € [0,T] according to the rule

Dag(t) = tim (20 Z SO 20 —E(0)

); (6)

where (£(t+ At) —£(t)) is considered as a column vector (vector in R™), ((t+At) —&(t))*
is a row vector (transposed, or conjugate vector) and the limit is supposed to exists in
Ly(92, F,P). We emphasize that the matrix product of a column on the left and a row on the
right is a matrix with rank 1 but after passing to limit and taking conditional expectation
Ds&(t) becomes a symmetric semi-positive definite matrix function on [0,7] x R” (in many
cases positive definite). We call Dy the quadratic mean derivative. It takes values in the
set of (2,0)-tensors having symmetric positive semi-definite matrices.

As mentioned above, the current velocity is analogous to ordinary velocity for a non-
random process. Thus, from the physical point of view, it is an important problem to study
equations and inclusions with current velocities.

Let v(t,m) be a vector field and «(t,m) be a symmetric positive semi-definite (2,0)-
tensor field on 7. The system

{Dsg(t) = (t,§(t)), (7)
DyE(t) = a(t,&(t))

is called the first order differential equation with current velocities.
Note that equation (7) on the flat torus 7" can be considered as an equation on R"
periodic in space variables.

Definition 4. We say that (7) on T™ has a solution on [0,T] with initial condition
€(0) = & if there exists a probability space (2, F,P) and a process £(t) given on (2, F,P)
and taking values in T such that £(0) = & and for almost all t € [0,T] equation (7) is
satisfied P-a.s. by £(t).

Theorem 1. Let v : [0,7] x T" — R™ and o : [0,T] x T" — Si(n) be smooth (so «
determines the Riemannian metric oq(-,-) on T", introduced above). Let & be a random
element with values in T™ whose probability density py with respect to the volume form
Ay of af-,-) on T™ (see above) is smooth and nowhere equal to zero. Then for the initial
condition £(0) = & equation (7) has a solution that is well-defined on the entire interval

t e 0,77.

Theorem 1 is a simple corollary to [2, Theorem 3|. Here we use the fact that on
the compact manifold 7™ the right-hand sides of (7) are uniformly bounded and so the
hypothesis of [2, Theorem 4.1] is fulfilled.

Introduce py = log py and consider p(t,m) = log p*(t, m) where p(t,m) is the density
(3) corresponding to the solution £(t) of (7). It is shown in |2, Theorem 3| that p(t,m) is
well-posed and takes the form

p(t,m) = polg—s(m)) — / (Div, v)(5, gu(gi(m)) ds, (®)

where Div, is the divergence with respect to (-, ) on the level surface t = const and g,
is the flow of smooth vector field v(t, m).
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2. Inclusions with Current Velocities

Let v(t,m) be a set-valued vector field and «(t,m) a set-valued symmetric positive
semi-definite (2,0)-tensor field on 7. The system of the form

{ Dsé(t) € v(t,§(1)), 9)
Dog(t) € ex(t,&(1))

is called a first order differential inclusion with current velocities. The notion of solution
of (9) is quite analogous to that from Definition 4.

Theorem 2. Let v(t,m) be a set-valued uniformly bounded vector field on T™ that has a
smooth selector. Let also at,m) be a (2,0)-tensor field having a smooth selector as well
and taking values in Sy (n). In addition, let & be a random element with values in T"
whose density py is smooth and nowhere equal to zero. Then for initial condition £(0) = &
inclusion (9) has a solution that exists on the entire interval t € [0,T.

Proof.

Denote the smooth selector of ae(m) by «(t,m) and of v(t, m) by v(¢t,m). It is evident
that the density of & with respect to the volume form of Riemannian metric constructed
from «(t,m) as above, is nowhere equal to zero. Then by Theorem 1 equation

{Dsf(t) = o(t,£(1)),
Dy¢(t) = a(t&(1))

has a solution well-posed on ¢ € [0,7] and it is a solution of (9) we are looking for.
O

Now we can apply the criteria for existence of smooth selectors for set-valued mappings
to obtain new existence theorems for inclusion (9).
For a solid closed convex set A and vector V in R” let us introduce the so-called support
function W(A, V') = sup(y, V) where (-, ) is inner product. Consider the set-valued vector
yeA

field v(t,m) on T" whose values are solid, convex and closed. Since the tangent bundle
of torus is trivial, we can deal with the constant vector field V' on the torus. Denote by
U(t, m, V) that support function of W(v(t,m),V). Let also the (2,0)-tensor field a(t, m)
on 7™ has values solid, convex and closed. Since a(t, m) takes values in S;(n) C L(R", R")
that is a linear space, we can construct the support function Wy(¢,m,V;) for a(t,m) by
complete analogy with the above scheme where V; is a constant (2,0)-tensor field on 7.

Assumption 1. For every V' and Vi functions VU(t,m, V) and ¥i(t,m, V1) are smooth.

Theorem 3. Let v(t,m) be a continuous uniformly bounded set-valued vector field on
T" having solid convex and closed values and let also a(t,m) be a continuous uniformly
bounded set-valued (2,0)-tensor field on T™ such that its values are solid convez and closed.
Suppose that Assumption 1 is fulfilled. In addition, let a random element & with values
in T™ has density that equals zero nowhere. Then for initial condition £(0) = &y inclusion
(9) has a solution that is well-posed on the entire interval t € [0,T].
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Proof.

In [1] it is shown that under Assumption 1 the continuous set-valued uniformly
bounded vector field with closed convex solid values has a smooth selector. Thus, the
statement of Theorem follows from Theorem 2.

O

Now let us consider the case where the values of v(t,m) and a(t,m) are not solid.
Instead we suppose that every image of v(t,m) (of a(t,m)) belongs to a subspace in
T, T™ (a subspace in the space of (2,0) tensors at m, respectively) and those subspaces
have constant dimension k < n (k1 < n, respectively) independent of m € T". If we
associate with every m € T" the above-mentioned subspace at m, we obtain a mapping
® form 7" to the manifold of affine subspaces with dimension %k in tangent spaces to
T T" (mapping ®; to the manifold of affine subspaces in the spaces of (2,0)-tensors,
respectively).

Assumption 2. Mappings ® and ®, are smooth.

Theorem 4. Let v(t,m) (a(t,m)) be a continuous uniformly bounded set-valued vector
field ((2,0)-tensor field with values in S (n)) on T™ such that every image v(t,m) belongs
to a subspace in T, T™ (every image o(t, m) belongs to a subspace in the space of (2,0)-
tensors, respectively) and those subspaces have constant dimension k < n (k1 < n,
respectively) independent of m € T". Let also Assumption 2 be fulfilled. Then for initial
condition £(0) = & where the density of & is smooth and nowhere equal to zero, inclusion
(9) has a solution that is well-posed on the entire interval t € [0,T).

Proof.

In [5] it is shown that in the case under Assumption 2, the continuous uniformly
bounded vector field with closed convex images has a smooth selector. Thus, the statement
of Theorem follows from Theorem 2.

O

In the case where the right-hand side of (9) is not continuous but upper or lower
semicontinuous, we have to construct smooth e-approximations in the former case and
smooth selectors in the latter case (see [3]). Taking those approximations, we construct
equations with current velocities of (7) type and after that we have to prove that the
solutions of the sequence of equations converge to the solution of (9). The following
Theorem can be a useful tool in this case.

Consider a sequence of equations of (7) type on 7" whose right-hand sides are smooth
and uniformly bounded for all k£ by the same constant. For k-th equation denote by py
the measure on the space of continuous paths (C°([0,T],7™),C) (where C is the o-algebra
generated by cylinder sets) corresponding to the solution & (t) of the k-th equation.

Theorem 5. The set of measures yy on (C°([0,T],T™),C) is weakly compact.

Proof.

First of all, note that since all processes & (t) take values in the compact torus, all
expectations E&(t) are uniformly bounded.

In [2], on the basis of Hauss decomposition (see [12]), every matrix a € Sy(n) is
represented in the form o = (d¢* where ( is a lower-triangle matrix with units on the
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diagonal, ¢* is its transposed matrix, i.e., an upper-triangle matrix with units on the
diagonal, and ¢ is a diagonal matrix whose angular minors (note that they all a positive)
coincide with those of a. Denote the diagonal elements of § by d1,...0d,. Then the matrix
A= C\/S where /4 is the diagonal matrix with /d,...,v/0, on the diagonal, is such
that o = AA*. If we deal with a smooth field ay(t,m), t € R and m € T", of the above-
mentioned approximations, the corresponding matrices Ag(t, m) are also smooth. Since
ag(t, m) are uniformly bounded by the same constant for all k, all Ax(¢, m) have the same
property.

Specify two real numbers 0 < s < t < T with small difference t —s. Then for any & the

t
increment of & on [s, t] is approximated by vk(s i J(t—8)+ Ar(s)(w(t) —w(s)). Consider

B (oo D) (0 )1 Ax(3) (w(t) —w(s))) (on ) (¢ — 8) +Ax(5) (w() —w(s)))*). Since vy
and Ay, are uniformly bounded for all k£ by a unique constant, one can easily see that among
the items in the obtained expression only ay(t —s) is infinitesimal of the same order as t —s
while the other items are infinitesimals of a higher order. Hence there exists a constant
hy such that if the difference ¢t — s is small enough, the above-mentioned expression is not
greater than hi(t — s). By integration one can show that there exists a constant h > 0
depending on 7" and on the constant that bounds the norms of vy and ay, such that for
any 0 < t; <t < T and every k the inequality E(&(t2) — &(t1))* < h(ty — t1)? holds.
Now the statement of Theorem follows from [6, Theorem 2 §4 of Chapter VI]J.

O
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O CTOXACTNYECKUX TNOPEPEHITINAJIBHBIX
BKJIIOUYEHUAX C TEKYIIVIMHIA CKOPOCTAMMN

IO.E. I'nuxaux, A.B. Maxaposa

[MonyueHbl TEOPEMBI CYIECTBOBAHUS PEIEHHH CTOXaCTHIeCKuX Tt depeHuaIbHbIX
BKJIIOYEHUI, 33J]AHHBIX B TEPMMHAX TAK HA3bIBAEMbBIX TEKYIIMX CKOpocreil (cummerpuye-
CKHUX IIPOU3BOMHBIX B CPEJHEM, NPSIMBIX aHAJIOIOB OOBIYHBIX CKOPOCTEH JeTepMHHHPOBaH-
HBIX CHCTEM) M KBaJPATUYHBIX IPOM3BOAHBIX B cpeaneM (farommx nadopmanuio o koaddu-
muenTe nudHys3un) Ha IIOCKOM n-MepHOM Tope. IIpasble YacTu u Jjst TEKYIIEei CKOPOCTH,
W IS 7 KBQJAPATUIHON MPOW3BOJHON MHOTMO3HAYHBI U YIOBJIETBOPSIOT YCAOBUIM, TPU
KOTOPBIX OHW UMEIOT TJIQJIKUE CEJIEKTOPhI. 3aTeM BKIIOUYEHUE CBOIUTCA K YPABHEHUIO C Te-
KYIIMMH CKOPOCTSAMHU, [IJIsI KOTOPOI'O TEOPEMa, CYIIECTBOBAHUS PEIlEeHUs] M3BECTHA B CIIyYae
IJIQJIKON IIPaBON 4aCTH.

Karouesvie caoea: npouseoduvie 68 cpednem; mexywue ckopocmu; dupdepenuyuansHte
BKNOUEHUSM,
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