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In this paper we study stochastic Wentzell systems: filtration equations describing fluid
filtration processes in a fractured porous medium in a three-dimensional ball and on its
boundary; free filtration equations describing the evolution of the free surface of the filtered
fluid in a three-dimensional ball and on its boundary. In particular, numerical solutions of
the Cauchy problem are constructed for the above systems of Wentzell equations and a
description of the processing of the results of n experiments at different values of a random
variable having a standard normal distribution is given (confidence intervals according to
the rule of three sigma are constructed for the obtained cross sections of the stochastic
process describing quantitative changes in the geochemical regime of groundwater under
non-pressure filtration and quantitative changes in free fluid filtration).

Keywords: stochastic filtration equation; stochastic free filtration equation; Wentzell

system of equations; information processing; three sigma rule; Nelson — Glicklich derivative.

Introduction

Let Q = {(r,0,¢) : r € [0,R),0 € [0,7],p € [0,27m)} be a three-dimensional ball
in R?* with boundary T' = {(r,0,¢) : r = R,0 € [0,7],¢ € [0,27)}. For the sake of
simplicity, we introduce real separable Hilbert spaces 4 = {u € W2(Q)®WZ(T) : Ogu = 0},
§ = Lo(2) @ Lo(I') and construct the spaces of random K-values. The random K-values
1, k € UkgLs have the following form

E=) NGoi X =D\, (1)
p= =1

where {¢} is the family of eigenfunctions of the modified Laplace — Beltrami operator
Avg, € L(U;F) orthonormalized in the sense of the scalar product (-,-) of Ly(€); {tx} is
the family of eigenfunctions of the modified Laplace — Beltrami operator Ay, € L(L;F)
orthonormalized in the sense of the scalar product (-, -) of Ly(Q2). Let us consider the linear
stochastic Wentzell system of the fluid filtration equations (see, e.g., [1]) in a ball and on
its boundary

(A =Avpy) 2 (t) = alg & + B, § € CF(Ry; UkLy), (2)
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(A= Dg) X (1) = 7Agox + Oré + 0y, x € CF(Ry; UgLy), (3)
where
9 9 2

Aot ()L 9

rop = (1= R)g. ((R T)8r> T o

2 P 9

A= L _90

o =5 T T o,

Here, the symbol 0r = v(t,r,0,¢), (t,7,0,9) € Ry x I', denotes the external normal

(o]

to Ry x €; the symbols ¢ (¢) and X (t) denote the Nelson — Glicklich derivative for
the corresponding stochastic process. The parameters a, v, A\, 5,0 € R characterize the
medium. Let us add to this system (2)—(3) a matching condition, which guarantees the
uniqueness of the obtained solution (see, e.g., [2]) and equip it with initial conditions

5(0) = o, X(O) = Xo- (4)

Let us call the solution of the problem (2)—(4) the solution of the Cauchy problem for the
stochastic Wentzell system of filtration equations.

In addition, on the 2 UT' compact, we consider the Cauchy problem for a system of
two Dzekzer [3|, equations modeling the evolution of the free surface of a filtering fluid,

(A= Do) € (B) = Aplrg o€ — BoAZy € — 70, € € C2(R,; UgLy), (5)

(A= Do) X (t) = a1 X — F125 X + Orn — 11X, X € CF(Ry; UkLy), (6)
£(0) = &, x(0) = xo (7)

subject to the matching condition
tru=vonR, xT. (8)

Here, the symbol 0r = v(t,r,6,¢), (t,7,0,p) € Ry x T, denotes the external normal

o

to Ry x Q; the symbols £ (t) un X (t) denote the Nelson — Glicklich derivative for the
corresponding stochastic process. The parameters ag, aq, A, 5o, 51, 7,71 € R characterize
the medium. The solution of the problem (5)—(8) is called the solution of the Cauchy
problem for the stochastic Wentzell system of free filtration equations.

The paper, in addition to the introduction and the list of references, consists of four
parts. The first part considers the existence and uniqueness of the stochastic Wentzell
system of fluid filtration equations in a three-dimensional ball and on its boundary.
The second part contains an algorithm for numerical investigation and processing of
information obtained from «artificial» experiment for the stochastic Wentzell system of
the Barenblatt — Zheltov — Kochina equations. The third part deals with the existence and
uniqueness of the stochastic Wentzell system of free fluid filtration equations in a three-
dimensional ball and on its boundary. The fourth part contains an algorithm for numerical
investigation and processing of information obtained from «artificials> experiment for the
stochastic Wentzell system of Dzekzer equations.
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1. Analytical Solution for the Stochastic Wentzell System of Fluid
Filtration Equations

We give an analytical study for the corresponding system (2)—(4) following the results
in [4].
In this case, consider the following series

—ak®\ (R —r)* . .
£ = Z exp ( P ) 7 ay sin(k0)(sin ke + cos ko) +

+ by, cos(k0)(sin kg + cos /ﬂp)) +

2

ak
+ Z exp ( e ) (ck sin(k0)(sin kp + cos kp)+

+ dy cos(k0)(sin ke + cos kga)) :

where

2

//ﬁo — ) sm(/ﬂ?)(sm ko + cos kp)r? sin 0dOdpdr,
00

3

™

(R— T)k . 2
b &]T cos(k0)(sin kp + cos kp)r< sin 0d0dedr,
0

Xo sin(k8) (sin kp + cos kp)dfdyp,

I
O\}]w O\?U O\ZU
o\ \2‘ O\S;

Xo cos(kO)(sin kg + cos kp)dOdep.

o\

It is easy to see that the series constructed above is a formal solution of the equation (2).
Moreover, if the series in (9) converge uniformly, then we have a solution to the problem
(2), (4), where 0r€ = 0. Given this, we can construct a solution to the problem (3), (4)

vk?
v = Z exp ( e ) (ck sin(k6)(sin ko + cos k) + dj cos(k8) (sin kg + cosky)), (10)

where in the case a = v, f = 0 the solutions of the problem (2)—(4) will satisfy the
matching condition.

The closure span{(R*)"Y(R — r)*sin(kf)(sinky + cosky), (R*)"YR
r)* cos(kf)(sin kg + coskp) : k € N\{1},7 € (0,R),0 € [0,7],¢ € [0,27)} generated by
the inner product

R 27 7

<§57 77’Z\)/>A»4(Q) = / / / ‘5(7’7 07 90)1,5(73 07 (10)7“2 sin Qded(pdrv
0O 0 O
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denote by the symbol A(2). Next, the closure of span{sin(kf)(sinke + cosky),
cos(kf)(sin kp + cosky): k € N0 € [0,7],¢ € [0,2m)} by the norm, generated by the
inner product

2t

(& D) ar) = / / )dode,

denote by the symbol A(T"). Thus, the following theorem holds.

Theorem 1. For any &, xo € UxkL2(Q2) and the coefficients o, B,7,0, A € R, such that
a=r, B=20, and \ # k?, where k € N, there exists a single solution ¢ € C*°(R; UkLy)
of the stochastic Wentzell system of (2)—(4) filtration equations.

2. The Numerical Investigation and Information Processing
Algorithm for the Stochastic Wentzell System of Filtration
Equations

The modified numerical algorithm for the stochastic Wentzell system of filtration
equations is based on the numerical solution of the Cauchy problem (2)—(4). In
particular, by conducting N computational experiments, an initial condition is set for
each experiment, whose random variables have a standard normal distribution, and an
approximate numerical solution is constructed in the following form

g(tv Ty 07 90) = £N(t7 Ty Q? 90) = Z fk(t)gbk(rv 07 90) + Z Xk(t)¢k(Rv 07 90)7 (11>

where {¢; : k € N} are eigenfunctions of the modified Laplace — Beltrami operator A, g,
and correspond to its eigenvalues orthonormalized by the norm (-, -) 4«), numbered in non-
increasing order with multiplicity; {ty : k € N} are eigenfunctions of the modified Laplace
— Beltrami operator Ay, and correspond to its eigenvalues, orthonormalized by the norm
(-, ) a(r), numbered in nonincreasing order with respect to multiplicity, and ¢x(R, 6, ¢) =
0,k =1,---,N. We substitute the approximate solution (14) into the equation (2) and
take the scalar product of the eigenfunctions ¢y (7, 0, @) and ¥y (R, 0, ¢) by the following
formulas (-, ) a@) u (-, -)am). We obtain the following system

(

()\_/\)£ (tr07(¢0)_a}\1§1( Ty 7@)+6£1(tT0790)

(o]

()‘_)\)5 (tr0730>_04)\2£2( r, 7()0)+6€2(tr0730>

()‘ - AN) £N (t7 T, 07 ()0) = OZ)‘N&N@? T, 07 ()0) + BSN(L T, 07 90)7
()‘ - ﬂl) )2)1 (ta T, 07 @) = ’Vlule(ta Ra 97 ()0) + 5Xl (ta R7 07 @)7
()‘ - ,u2> )2)2 (ta r, 07 @) = 7“2X2(t7 Ra 97 ()0) + 5X2(t7 R7 07 @)7

(12)

()‘ - :U’N) XC}V (t7T707 ()0) = /y,U/NXN(tv R707§0) + 5XN(t7 Raeu 90)7
\cpk(R,G,go) Eo7k: ]-7 7N‘
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Depending on the value of the parameter A\, we have algebraic or first order differential
equations in the system (12). Let us consider these conditions in more detail.

(1) A & 0(A,p,). In this case, the mathematical model is nondegenerate, and all
equations in the resulting system are first order ordinary differential equations. To make
this system solvable with respect to &x(t) and xx(t), we multiply scalarly the initial
conditions (4) by the eigenfunctions ¢x(r, 0, ¢) and ¥ (R, 0, ¢) by the norm (-, -) 4(q) and
(-, -)a), respectively. We then solve the system (12) with appropriate initial conditions
and find the coefficients & (¢) in the approximate solution 2 (t,r,0,p).

(i) A € 0(A,p). Let focus on the following equipment A = A, = -+ = \,,,, where
r is the multiplicity of the root. Then part of the equations will be algebraic and the
other part will be first order ordinary differential equations. Let us consider separately the
systems consisting of algebraic equations and first order differential equations. Note that
the solution of the initial problem exists, according to the theorem, if the initial functions
uo(r, 8, ) and vo(0, @) in the deterministic case or &y, xo in the stochastic case belong to
the phase spaces 37 and 3o, respectively

P = {u € A(Q) : (6 or)a@) =0, \p = )\},‘432 = {U € A(D) : (x,Yw)am) = 0, A = )\}-

&

Obtaining solutions of the system of
differential equations with suitable initial
conditions.

‘ Start of the program ‘

!

Input the parameters &,
alpha, beta, gamma, R, N and initial
conditions xi_0, chi_0

i‘ Obtaining the solution of
homogeneous differential
equations

Verification of condition (i)
from Thearem

Construction the solution in the form of
a Galerkin sum

l v
Obtaining selutions to algebraic
equations

Substitution of the approximate solution
inte the system of Wenizell equations

k=1
i Staging of the coefficients
The scalar product of the system of I
Wentzell equations on eigenfunctions Qutput of the solution of the system
¢ and its graph
I
k=N

Finding M{xi_N{t}), D[xi_N(t)) and

sigma(t), plotting the graph

<>
O O

{ End of program J

Fig. 1. Information processing algorithm for the stochastic Wentzell system of filtration
equations

For further processing of the results, a cycle is run for ¢, which allows one
program to process the results of N experiments, where the necessary characteristics
of random processes (mathematical expectation from the section of a stochastic process
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M(&(t,r,0,9)), variance from the section of a stochastic process D({(t,r,0,¢)) and
standard deviation o(t)) are calculated. Here, the mathematical expectation is the non-
random function M ({(t,r,0,¢)), which at any value of ¢ is equal to the mathematical
expectation of section of a stochastic process , i.e. is the average trajectory (realization)
obtained as a result of processing N experiments; the variance and mean square deviation
will be the non-random functions D({(t,,6,¢)) and o(t), which at any value of ¢ are
equal to the variance and mean square deviation of the corresponding of section of a
stochastic process. Thus, using the rule of three sigma, we can state that with probability
0.997 we can estimate ||£(t, 7,0, ) — M(&(t,7,0,¢9))| < 30(t), which allows us to draw
qualitative conclusions about Wentzell systems consisting of the Barenblatt — Zheltov
— Kochina equations, taking into account the initial variation of random variables and
parameters of the equations characterizing the environment. The figure 1 shows the
numerical investigation and information processing algorithm for the stochastic Wentzell
system of filtration equations.

3. Analytical Solution for the Stochastic Wentzell System of Free
Fluid Filtration Equations

We give an analytical study for the corresponding system (5)—(8) following the results
in [5]. In this case, let us consider the following series

o0 _ k4 _ k2 — R— k
u= Z exp (t bo 3 +O;§2 %) ( ka (ak sin(k6)(sin kg + cos ky)+
k=2

+ by, cos(k0)(sin kp + cos /ﬂp)) +

o0 A A 12
+ Z exp (t bo k 3 +&];)f 70) (ck sin(k6)(sin kg + cos ky)+

+ dj cos(k0)(sin ke + cos kga)) :

f

where

3

(R — T)k : . 2 .
{07 sin(k@)(sin kp + cos kp)r” sin dfdedr,

O\l:\f
o

2

/ /fo i cos(/ﬂ?) (sin ke + cos ko)r? sin 0dfdpdr,
00

3

O\DU

™

2
k= / /XO sin(k0)(sin kg + cos k)dOdyp,
0 0

27w

dy = / /XO cos(k0)(sin kg + cos kp)dOdp.

0 O
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It is easy to see that the series constructed above is a formal solution of the equation
(5). Moreover, if the series in (13) converge uniformly, then we have a solution to (5), (7),
where 0r€ = 0. Given this, we can construct a solution to (6), (7)

x ~Bok* — agk? —
v = Z exp (t fo S +a22 %) (cx sin(k) (sin kp+cos k) +dj cos(k6) (sin kp-+cos ky)),

where in the case oy = a1, By = B1, 70 = 71 the solutions of the problem (5)—(8) will
satisfy the matching condition.

The closure span{ R™*(R — r)* sin(k6)(sin ke + cos k), R7*(R — r)* cos(kf)(sin ke +
cosky) : k€ N\{1},7 € (0,R),0 € [0, 7], € [0,27)} generated by the inner product

R 27 =

(@, 1/) AQ) /// (r, 8,@)¢(r 0, ©)r? sin OdOdpdr,
00

denote by the symbol A(€Q). Next, the closure of span{sin(kf)(sinky + coskyp),
cos(kO)(sin kg + coskp): k € N,§ € [0,7],¢ € [0,27)} by the norm, generated by the

inner product
(%) am / / P)dbdy,

denote by the symbol A(T").
Thus, the following theorem holds.

Theorem 2. For any &, xo € UkLa(2) and for the coefficients oy, o, A, Bo, B1, V0, 71 €
R, such that the condition ag = o, By = B1, Yo = Y1, and X # k* are hold, where k € N,
there exists a single solution & € C®(Ry;UkLs) of the stochastic Wentzell system of
(5)—(8) free filtration equations.

4. The Numerical Investigation and Information Processing
Algorithm for the Stochastic Wentzell System of Free Filtration
Equations

The modified numerical algorithm for the stochastic Wentzell system of filtration
equations is based on the numerical solution of the Cauchy problem (5)-(8). In
particular, by conducting N computational experiments, an initial condition is set for
each experiment, the random variables of which have a standard normal distribution, and
an approximate numerical solution is constructed in the following form

g(ta T, 0, 90) = €N(t7 r, 0, @) = Z gk(t)¢k (Ta 0, 90) + Z Xk(t>wk(R7 0, 90)7 (14>

where {¢;, : k € N} are eigenfunctions of the modified Laplace — Beltrami operator A, g,
and correspond to its eigenvalues orthonormalized by the norm (-, -) 4(), numbered in non-
increasing order with multiplicity; {y : k € N} are eigenfunctions of the modified Laplace
— Beltrami operator Ay, and correspond to its eigenvalues, orthonormalized by the norm
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(-, ) a(r), numbered in nonincreasing order with respect to multiplicity, and ¢,(R, 0, ¢) =
0,k=1,---,N.

Let us substitute the approximate solution (14) into the equation (5) and take the
scalar product of the eigenfunctions ¢y (r, 0, ¢) and ¥, (R, 0, @) by the following formulas
(-»)a@) and (-, ) ar). We obtain the following system
4 o}

()\ - )\1)51(15, r, 97 ()0) :Oéo)\lgl (t7 r, 67 90) _60)‘%61 (ta r, 97 ()0) _’7051 (ta T, 97 ()0)7

(o]

()\ - )‘2)52(t7 r, 97 ()0) :Oéo)\1€2 (t7 r, 67 90) _60)‘352(t7 r, 97 ()0) _’7052(167 T, 97 ()0)7

()\ - )\N)fN(ta r, 07 (10) :ao)‘lfN(t7 T, 97 90) _BOA?\féN(tu r, 07 (;0) _’70£N(t7 r, 07 (;0)7
()‘ - ul))gl(ta T, 97 ()0) =01H1X1 (ta r, 67 @) _BIM%XI (ta r, 67 90) —71X1 (ta r, 67 @)7
()‘ - M2))€2(t: T, 97 ()0) =012X2 (ta T, 67 @) _BIM%XQ (ta r, 67 90) —71X2 (ta r, 67 @)7

(15)

()\ - MN)XC}V(ta r, 07 (;0) ZQIMNXN(ta r, 07 (;0) _BIM?VXN(t7 T, 97 90) _/YIXN(ty T, 97 90)7
@k(R,@,Q@) ank: L 7N'

Depending on the value of the parameter A\, we have algebraic or first order differential
equations in the system (12). Let us consider these conditions in more detail.

(1)) A & 0(Ap,,). In this case, the mathematical model is nondegenerate, and all
equations in the resulting system are first order ordinary differential equations. To make
this system solvable with respect to &x(t) and xx(¢), we multiply scalarly the initial
conditions (4) by the eigenfunctions ¢x(r, 0, ¢) and ¥4 (R, 6, ¢) by the norm (-, -) 40y and
(-,-)am), respectively. We then solve the system (12) with appropriate initial conditions

and find the coefficients & (t) in the approximate solution (¢, 7,0, ¢).

(1)) A € 0(Arp). Let focus on the following equipment A = A, = -+ = A, , where
r is the multiplicity of the root. Then part of the equations will be algebraic and the
other part will be first order ordinary differential equations. Let us consider separately the
systems consisting of algebraic equations and first order differential equations. Note that
the solution of the initial problem exists, according to the theorem, if the initial functions
uo(r, 0, ) and vo(0, @) in the deterministic case or &y, xo in the stochastic case belong to
the phase spaces 37 and *J3,, respectively

B = {U € A(Q) : (€, or)a) = 0, \p = )\}7‘132 = {U € AD) - (X, Yr)am) =0, \ = /\}'

For further processing of the results, a cycle is run for ¢, which allows one
program to process the results of N experiments, where the necessary characteristics
of random processes (mathematical expectation from the section of a stochastic process
M(&(t,r,0,¢)), variance from the section of a stochastic process D((t, 7,0, ¢)) and
standard deviation o(t)) are calculated. Here, the mathematical expectation is the non-
random function M ({(t,r,6,¢)), which at any value of ¢ is equal to the mathematical
expectation of section of a stochastic process , i.e. is the average trajectory (realization)
obtained as a result of processing N experiments; the variance and mean square deviation
will be the non-random functions D({(t,,6,¢)) and o(t), which at any value of ¢ are
equal to the variance and mean square deviation of the corresponding of section of a
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Start of the program l

l

Input the parameters A,
alpha, beta, gamma, R, N and initi
conditions xi_0, chi_0

Obtaining solutions of the system
of differential equations with
suitable initial conditions

Verification of condition (i
from Thearem

Obtaining the solution
Construction the solution in the of homogeneous
form of a Galerkin sum differential equations
J v
Substitution of the approximate Obtaining solutions to
solution into the system of algebraic equations
Wenizel equalions

L3
Staging of the
cosfficients

Scalar product of the system of ¥

Wentzel equations on tput of the solution of the systel
eigenfunctions and its graph

Finding M(xi_N(t)), D{xi_N(t)) and
sigma(t), plotting the graph

Fig. 2. An information processing algorithm for the stochastic Wentzell system of free
filtration equations

stochastic process. Thus, using the rule of three sigma, we can state that with probability
0.997 we can estimate [|£(t,7,0,0) — M((t,7,0,9))|| < 30(t), which allows us to draw
qualitative conclusions about the Wentzell systems consisting of the Dzekzer equations
taking into account the initial variation of random variables and parameters of the
equations characterizing the medium. The figure 2 shows the algorithm of numerical
investigation and information processing for the stochastic Wentzell system of free filtration
equations.

Acknowledgment. The research was funded by the Russian Science Foundation (project
no. 23-21-10056).

References

1. Barenblatt G.I., Zheltov I.P., Kochina I.N. Basic Concepts in the Theory of Seepage
of Homogeneous Liquids in Fissured Rocks. Journal of Applied Mathematics and
Mechanics, 1960, vol. 24, no. 5, pp. 1286-1303. (in Russian)

2. Goncharov N.S.; Zagrebina S.A., Sviridyuk G.A. Non-Uniqueness of Solutions to
Boundary Value Problems with Wentzell Condition. Bulletin of the South Ural State
Unwversity. Series: Mathematical Modeling, Programming and Computer Software,
2021, vol. 14, no. 4, pp. 102-105. DOI: 10.14529 /mmp210408

3. Dzektser E.S. Generalization of the Equation of Motion of Ground Waters with Free

2024, vol. 11, no. 3 11



N. S. Goncharov, G. A. Sviridyuk

10.

11.

12.

13.

14.

15.

Surface. Doklady Akademii Nauk SSSR, 1972, vol. 202, no. 5, pp. 1031-1033. (in
Russian)

Goncharov N.S., Sviridyuk G.A. An Analysis of the Wentzell Stochastic System of the
Equations of Moisture Filtration in a Ball and on its Boundary. Bulletin of the South
Ural State University. Series: Mathematical Modeling, Programming and Computer
Software, 2023, vol. 16, no. 4, pp. 84-92. DOI: 10.14529 /mmp230406

. Goncharov N.S., Sviridyuk G.A. Analysis of the Wentzell Stochastic System

Composed of the Equations of Unpressurised Filtration in the Hemisphere and at
Its Boundary. Bulletin of the South Ural State University. Series: Mathematical
Modeling, Programming and Computer Software, 2024, vol. 17, no. 1, p. 86—-96. DOI:
10.14529 /mmp240108

Gliklikh Yu.E. Global and Stochastic Analysis with Applications to Mathematical
Physics, London, Dordrecht, Heidelberg, N.Y., Springer, 2011.

Shestakov A.L., Sviridyuk G.A. On a New Conception of White Noise. Obozrenie
Prikladnoy i Promyshlennoy Matematiki. — 2012, vol. 19, no. 2, pp. 287-288. (in
Russian)

Kitaeva O.G., Shafranov D.E.; Sviridyuk G.A. Exponential Dichotomies in Barenblatt
— Zheltov — Kochina Model in Spaces of Differential Forms with “Noise”. Bulletin of
the South Ural State University. Series: Mathematical Modelling, Programming and

Computer Software, 2019, vol. 12, no. 2, pp. 47-57. DOI: 10.14529 /mmp190204

Shestakov A.L., Keller A.V., Zamyshlyaeva A.A., Manakova N.A., Zagrebina S.A.,
Sviridyuk G.A. The Optimal Measurements Theory as a New Paradigm in the

Metrology. Journal of Computational and Engineering Mathematics, 2020, vol. 7, no. 1,
pp. 3-23. DOI: 10.14529/jcem200101

Favini A., Zagrebina S.A., Sviridyuk G.A. The Multipoint Initial-Final Value
Condition for the Hoff Equations in Geometrical Graph in Spaces of K-“Noises”.
Mediterranean Journal of Mathematics, 2022, vol. 19, no. 2, article ID: 53. DOI:
10.1007/s00009-021-01940-0

Favini A., Sviridyuk G.A., Manakova N.A. Linear Sobolev Type Equations with
Relatively p-Sectorial Operators in Space of “Noises”. Abstract and Applied Analysis,
2015, vol. 2015, article ID: 69741, 8 p. DOIL: 10.1155/2015/697410

Favini A., Sviridyuk G.A., Zamyshlyaeva A.A. One Class of Sobolev Type Equations
of Higher Order with Additive “White Noise”. Communications on Pure and Applied
Analysis, 2016, vol. 15, no. 1, pp. 185-196. DOI: 10.3934 /cpaa.2016.15.185

Favini A., Sviridyuk G., Sagadeeva M. Linear Sobolev Type Equations with Relatively
p-Radial Operators in Space of “Noises”. Mediterranean Journal of Mathematics, 2016,
vol. 13, no. 6, pp. 4607-4621. DOI: 10.1007/s00009-016-0765-x

Coclite G.M., Favini A., Gal C.G., Goldstein G.R., Goldstein J.A., Obrecht E.,
Romanelli S. The Role of Wentzell Boundary Conditions in Linear and Nonlinear

Analysis. Advance in Nonlinear Analysis: Theory, Methods and Applications, 2009,
vol. 3, pp. 279-292.

Wentzell A. D. Semigroups of Operators Corresponding to a Generalized Differential
Operator of Second Order. Doklady Academii Nauk SSSR, 1956, vol. 111, pp. 269-272.
(in Russian)

12

Journal of Computational and Engineering Mathematics



COMPUTATIONAL MATHEMATICS

Nikita S.  Goncharov, assistant, Department of FEquations of Mathematical
Physics,  South — Ural  State  University  (Chelyabinsk,  Russian  Federation),
Goncharov. NS.krm@Qyandex.ru

Georgy A. Sviridyuk, DSc (Math), Full Professor, Professor of Department of
Equations of Mathematical Physics, South Ural State University (Chelyabinsk, Russian
Federation), sviridiukga@susu.ru

Received August 21, 2024

YK 517.9, 519.216.2 DOI: 10.14529/jcem240301

OBPABOTKA NMH®OPMAIIVN B YNCJIEHHOM
NCCJIEAOBAHUN JJId HEKOTOPBIX
CTOXACTUYHECKUX CUCTEM BEHTHEJIA
YPABHEHUN I'MJIPOJINHAMUKU B IITAPE

1N HA EI'O 'PAHUILIE

H. C. I'onuapos', I. A. Csupudiox!
Okn0-Ypanbeknil rocynapeTBeHHbli yHuBepenTeT, . Yeasaoumnck,
Poccniickas @enepariust

B pabote nccienyorcs croxacTudeckne CUCTEMbI BeHTIe /s1: ypaBHEeHUS (PUILTPAIIHH,
OIIACHIBAIONIHE TIPOIECCHI (DUIIBTPAIUE KIJIKOCTH B TPEIIMHOBATO-TIOPUCTON CpeJie B TPEX-
MEPHOM IlIape W Ha €ro IPaHMUIle; YPABHEHHUsI CBOOOIHOM (DUIBTPAINH, OIUCHIBAIOIINE SBO-
JIFOIIMIO CBOOOJIHOI ITOBEPXHOCTU (DUJIBTPYIOIENCsT XKUJIKOCTH B TPEXMEPHOM IIape W Ha ero
rpaxure. B 9acTHOCTH, JijIst yKa3aHHBIX CHCTEM ypaBHeHuil BeHTiie st cTposiTCst YnCIeHHbIe
pertenns 3aga4du Komm m IpUBOANTCS OMUCAHUE OOPAOOTKU PE3YyabTATOB N SKCIEPUMEH-
TOB MPU PA3JINYHBIX 3HAYEHUAX CIYIaifHON BEJUYMHBI, UMEIOIIEH CTaHIAPTHOE HOPMAJIh-
HOe pacipejiesieHne (JJIsi IOy YeHHBIX CeYeHNIl CTOXACTHYECKOIO IIPOIECCa, OIMCHIBAIOIINX
KOJIMYECTBEHHOE M3MEHEHNE IeOXMMHUYECKOIO PEeKUMa TI'PYHTOBBIX BOJ, IIPU OE3HAIIOPHO
buIbTPaUU U KOJIMIECTBEHHbIE N3MEHEHUsI CBODOTHON (DUJIBTPAIUN KUJKOCTH CTPOSITCS
JIOBEPUTEJIbHbIE HHTEPBAJIBI 10 [IPABIILY TPEX CUIM).

Karouesvie caosa: cmoxacmuieckoe ypasrenue Guibmpayul; cmoracmuieckoe ypas-
Henue c60600not Pusvmpayuy; cucmema ypasHenuls Benmueas; obpabomika undopmanuu;

npasus0 mpex cuem; npoudseodnas Heavcona — Laukauxa.
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