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Introduction

In order to move a system from a given starting state to a desired end state or one that
is near to it, one must identify suitable controllers. Kalmann was the first to introduce the
notion of controllability using the concept of functional analysis. The monographs [1-3]
and articles [4-12|, and their references discuss various types of controllabilities for linear
and nonlinear systems using a functional analytic approach.

In many systems, the state abruptly changes at a specific moment in time or for short
period of time. These systems can be referred to as instantaneous or non-instantaneous
impulsive systems. The applications and characteristics of these systems are discussed
in [16-20] and the references therein. Shah et al. discussed the TC of a first-order non-
instantaneous impulsive system in the Banach space, |21, 24]. Determining a controller
that moves the system from a given beginning state to the desired final state allows
an examination of the system’s different types of controllability, however, this controller
style is not cost-effective. George [13] introduced Trajectory Controllability (TC). Instead
of leading the system from a specific starting condition to the intended end state,
the challenge was to build a controller that directs a system along a preset course. A
specific path and the intended location are necessary when launching a rocket into space.
Consequently, TC has been explored by numerous researchers [14,15]. Sandilya et al.
investigated the TC of a semi-linear parabolic system.

Many evolutionary systems representing wave phenomena are modeled into second-
order systems. Therefore, in this article, the authors discuss the TC of the second order
system

{ q"(t) = Aq + F(t,q(t), a'(t)) + = (), 0

q(0) = q10, d'(0) = g0,
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by considering non-instantaneous impulses over the finite time interval Q = [0, 7], where,
at each time ¢, the state lies in X, A is the linecar on X, F : Q x X® — X is a non-linear
function, and w(t) is the trajectory controller of the system.

1. Preliminaries

Definition 1. /[Complete Controllability] [22] The evolution system completely controllable
on the interval Q = [0, Ty| if for any qo, q1 € X there exists a controller w(t) in the control
space U such that the state of system mowves from the initial state qo at t = 0 to desire
final state qy att ="TT.

Definition 2. [Total Controllability] [22] The evolution system is totally controllable over
the interval Q = [0, Ty] if it is completely controllable over all its subintervals [tg, tii1].

Z

Let Cq be the set of all functions q(-) defined over 2 satisfying the initial state and
final state g(0) = go and q(7") = q1, respectively. This set C, is called the set of all feasible
trajectories. A controller with complete and total controllability for a linear system will
be optimal but for a semi-linear or non-linear system it may not be optimal. To overcome
this situation one has to design a trajectory having optimum energy or cost and define the
controller in such a way that the state of the system steers along this trajectory. Finding
the controller which steers the system on the prescribed optimal trajectory from an initial
state to desired final state is called TC.

Definition 3. [TC] [22] The evolution system is trajectory controllable (T-Controllable)
if, for any trajectory q € Cr, there exist L? control function w € U such that the state of
the system q(t) satisfy q(t) = q(t) almost everywhere over Q.

In TC, one must identify the controller that will steer the system along a predetermined
trajectory from an arbitrary beginning state to the desired final state. Consequently, TC
is the most powerful kind of controllability.

2. TC without Impulses

This section discusses the TC of the second-order system

{ q"(t) = Aq+ F(t,q(t), 7'(t) + = (t),

2
q(0) = 10, 4'(0) = a0, @)

without considering impulses over ). Assuming F is good enough to have unique mild
solution

q(t) = C(t)qu0 + S(t)da0 + /0 S(t =) [F(r,a(7),d(7)) + w(7)]dr, (3)

for all t € 2 and any measurable function w(t). Where C(-) is a strongly continuous cosine
family of operators generated by the linear part A, and S(-) is the associated sine family
of operators.
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Theorem 1. The system (2) is T-Controllable over Q) if F is measurable with t, continuous
with respect to other arguments, and there exist positive constants Lri and Lpy such that

17t a1 81) = F(t. 82, 2)[| < Lra |81 — ol + Lallar — g2

Proof. Let p(t) be any trajectory from Cg which steers the evolution equation (2) from the
initial state gjo to desired final state g;. Define trajectory controller w(t) as

w@(t) =p"(t) — Ap(t) + F (¢, p(t), p'(2)), (4)

and plugging it in the system (2), the system becomes:
q'(t) = Ag+ F(t,q(t),q'() +p"(t) — Au(t) + F(t,p(t), p'(1)). (5)

Considering 3(t) = §(t) — p(t), the system (5) becomes
3'(4) = As(t) + F(t,a(t),q'(t)) — F(&,p(1),p'(1)), (6)

with conditions 3(0) = 0, 3/(0) = 0, and the mild solution of the system (6) satisfies

3]l S/O IS =)l 17 (7 a(r), a'(r)) = F (&, p(t), p' (1)) dr.

This assumes the properties of a strongly continuous cosine family of the operators
generated by linear part 4 and the hypotheses of the theorem,

321l S/O ISt =) Ly lla(m) — w(n)]| + Lz [[¥'(7) = w'(7)] dr

t
<K [ @rlsl +Lrls@l) dr K =[SOl
0
Differentiating (||3(¢)| is differentiable a.e) the above inequality

15° O < K (Leall38) || + Lealls'@)]])
simplifying

IOl < 2o

Applying a differential form of Gronwall’s inequality ||3(¢)|| = 0 a.e., and thus q(t) = p(t)
a.e. Hence the system (2) is T-Controllable over €.

(I
Example 1. The equations of motion for an artificial satellite, due to the oblateness of
the earth, are modeled into second-order equations

" o _ﬂ . 3/1R2<]2?(;2 + 02 B 432)
r (t) - 7’3; 2T7 )
wepy M 3uRP Dy (e +v° — 45°) 7
n'(t) = =L 5T : (7)
w1, 3uRP (3% 4 39 — 23%)
3'(t) = =33 57 ,
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where p = GM, G is the universal gravitational constant, R, M are radius, mass of earth,
respectively, J, is a zonal coefficient, and r = \/r? + 92 + 32. From the various studies, it
was found that the motion of an artificial satellite is unstable for the oblate earth if the
initial velocity is low and sometimes it can fall from orbit [23].

Therefore to make the motion in the prescribed orbit one has to plug the controller into
the satellite so that it follows a specific path. Let [u(t), ua(t), us(t)] and [w; (t), we(t), w3(t)]
be the prescribe trajectory and the trajectory controller for the satellite, respectively.
Plugging it in (7), the equations of motion becomes:

po BuRPIr(y® + 9 — 43%)
r'(t) = et o7 + wi(t),
i 3uR?Jm(® + 97 — 45%)
n"(t) = —ﬁ\) - o7 + wo(t), (8)
3uR?Jon (3% 4 392 — 232
3”(15) — _%3 o % 2‘)( )5 U 3 ) +w3(t).

277

Since the motion of many low earth satellites has a circular orbit having fixed radius r = a
from the center of the earth. Therefore, the equation of motion for the circular orbit r = a

becomes: SR ( ) 2y 2)
1% ¥ 2L(r° +9° — 43
¢t =~ L - — o),
po o 3uRP Iy (e 4 v° — 45°)
y'(t) = =5 - o + wy(t) (9)
3uR?Jon (3% 4 392 — 232
3//(75) — _% . I 20( ?2@7 U 3 ) +w3(t).

These motion equations have the following form

7'(t) = AF(t) + F(t,7(t)) + w(t),

(10)

where, 7 = [p(t),n(t), 3(¢)] the position vector of the satellite,

3 0 0
A=o -5 0, Few)

"

0 0 3

[ 3uR?Jor(r® +9° —43%) ]
B 2a7
3R Joy(x* + v — 45°)
B 2a”
3uR? oy (3 + 3p° — 23%)
B 2a7 J

The function F(7(t)) is differentiable with respect to 7 as all of its partial derivatives
exist and are continuous over any finite time interval. The linear operator A generates a

strongly continuous cosine family of operators
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State without Controller
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Fig. 1. The motion of the satellite is not stable without a controller.

and the associated sine family

0
s =% o in,/2e 0
— I S1n a3
.
] 0 sin @t_

Thus the motion of the satellite (10) is T-Controllable for finite time intervals. Let the
initial position of the satellite be

o = [0, —5888.9727, —3400],

having initial velocity vy = [7,0,0]. The Figure 1 shows that the motion of the satellite is
not stable without a controller.
Data:

7o = (0, —5888.9727, —3400), v = (7,0,0), R =6378.1363, a = |rol,

w=Gx*M, Jy, =1082.63 x 107%, Time Span: 540000 sec. Now considering the trajectory
for the motion of the satellite

3
p(t) = |7,/ L sin [t —5888.9727cos /Lot —3400cos 4/ ot |
I a3 a3 a3

and define the trajectory controller w(t) = u” — Au— F(u) and plugging into the equation
of motion (10) the state of the system follows prescribed path. The Figures 2a and 2b
show the trajectory and state with the controller.
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Trajectory for the Motion State of the system with controller
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Fig. 2. The trajectory and state with the controller.

3. TC with Impulses
This section discusses the TC of the non-instantaneous impulsive second-order system
q"(t) = Aq + F(t,q(t), q'()) + @w(t), t€[0,41)U[si,ta)---Uls,, To]
q(t) = Gr(t,a(t)) + @ (t), t € [ty s1) Ulta, s9) - Ultp, 5p), (11)
q(0) = gi0,  9'(0) = o,
over (). Attributes of the system (11) are good enough to have a unique mild solution
(C(t)d0 + S(t)dz
+ [ 8=7) 1F.a.a () =) i te o)
q(t) = Gr(t, El(t())) + @i (t), t € [te, sk), (12)
C(t — 51)Gr(sk, q(sk)) + S(t — 51)G. (58, q(51))

+ [ S(t=s) Fran).qm) + =) dr, ¢ €t

\ Sk

for all ¢ € Q and any measurable function w(t), where C(+), S(-) are a strongly continuous

cosine family of operators generated by the linear part A and the associated sine family

of operators, respectively, and G; denotes the derivative of G, with respect to t.
Assumptions:

(A1) The linear part A of the equation (11) is an infinitesimal generator of a strongly
continuous cosine family of operators;

(A2) The nonlinear function F is measurable with respect to argument ¢ over €2 and there
exist constants ry, L1, and Lgo such that

IF(t a1 82)=F (¢, @1, @)l < Lps @ =@l +Lrallfa—2l . Va8 € By X, 8=1,2;

(A3) The nonlinear functions G; and its time derivative Gj. for a known value of q(¢).
Moreover there exist 0 < gx < 1 such that

1Gx(t. @) — Gr(t. D) < grlld —all. V4,9 € B,
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Theorem 2. The system (11) is T-Controllable over 0 if hypotheses (A1l)—(A3) are
satisfied.

Proof. Let p(t) be any trajectory from Cq which steers the evolution equation of (11) from
the initial state qio to desired final state x1; satisfying u(t) = q(¢}). Over the interval
[0,¢1) the system becomes:

q"(t) = Ag + F(t,q(t),q'(t)) + @ (t)d(0) = o, q'(0) = dao- (13)

Plugging the controller

@(t) = p"(t) — Ap(t) + F (£, p(t), §'(1)), (14)

into the system (13), and proceeding in same way as in Theorem 1, the system is
controllable over the interval [0, ¢;). Over the interval [ty sx), the system becomes:

q(t) = Gi(t, (1)) + @(t). (15)

Plugging the controller

@i(t) = p(t) — Gi(t, (1)), (16)
into the system (14), the system becomes q(t) — p(t) = Gi(t, q(t)) — Gr(t,p(t)). Taking
3(t) = q(t) — p(t) and computing

3 = 1IGr(t, a(t)) = Gr(t, PO < orll3 (D)1

Thus, (1 — gi)|l2(t)]| < 0. Since gr < 1 therefore ||z(t)|| = 0. Hence, the system
is T-Controllable over [tg, sg), Yk =1,2,---  p.

Over [sg, tr11) the system becomes:

q'(t) = Ag+ F(t,q(t),7'(t)) + = (1), (17)

with initial conditions q(sx) = Gr(sk, q(sk)) and q'(sx) = G} (sk, q(sk)). Since, ||3(¢)|| = 0

for all t € [tg,sk) and the continuity of Gy leads to ||3(sg)|| = 0. Thus, q(sx) = p(sk).
Plugging the controller

@(t) = p"(t) — Ap(t) + F (£, p(2), P'(1)), (18)

into the system (17) and assuming the hypotheses (A1)-(A3) and using the theorem 1,
the system is T-Controllable over the interval [sy,tgi1). Hence, the system (11) is T-
Controllable over €.

(I
Example 2. Consider the partial differential equation
0?Z(t,q .
M :Zflﬁ(tvq)—i_eiZ(t’q)_}_w(t)? le 07% U %71 ;
Z(t,q) = 5 sin (Z(t,9)). te {é%)
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in the Banach space X = L%(Q), Q = [0, 7], Ty = 7, and with initial condition

Z(07 El) = ZO(El)a Zt(07 El) = ZI(ED’

and boundary conditions Z(t,0) = Z(t,7) = 0. Define an operator, A, as AZ = Zz; over
the domain
Dom(A) = {y € L*(Q) : y" exist and z(0) = z(7) = 0}'

Operator A is represented by
= 2 .\ 2
Az = Z —n*( z, {/— sinng — sinng, z € Dom(A).
— T T

The operator A is the infinitesimal generator of strongly continuous cosine family C(-)

on X defined by
G 2 2
C(t)z = ;cosnt <z, \/; sinnE[> \/;sinnc_],

and the associated sine family S(-) on X defined by

1 2 2
S(t)z = Z Esint <z, \/; sinnE|> \/; sin ng.
n=1

The evolution Eq. (19) can be formulated as the abstract equation in X = L?([0,1]) as:

' ((1127;) = Av(t) + F(t,v(t)) + =(t), te [o,g) U {31}

v(t) = Gi(t,v), te {%, g) (20)

"
LT de

(0) = 0.

e The function F(t,v) = e~" is a continuous function and there exist [z(r) = 1 on B,,
satisfying
|F(t, v1) = F(t, )l < [lor — w2

Thus, by Theorem the system (20) is T-controllable over [0, 1].
e Assuming that the derivative of £ sinz , 2/(t) exist over the interval [0, 1].

Then, the system (20) is T-Controllable over [0, 1].

Conclusion

This paper discusses the TC of a second-order systems with and without impulses.
The TC of the system was obtained using the concept of a cosine family of operators,
nonlinear functional analysis, and Gronwall’s inequality. Applications to the motion of the
artificial satellite and nonlinear one-dimensional wave equations are also added to validate
the obtained results.

2024, vol. 11, no. 4 29



V. Shah, J. Sharma, M. E. Samei, GG. Trivedi

References

1.

Russell D.L. Mathematics of Finite-dimensional Control Systems: Theory and Design.
M. Dekker, New York, 1979.

2. Sontag E.D. Deterministic Finite Dimensional Systems. Springer, New York, 1998.
3. Brockett R.W. Finite Dimensional Linear Systems. John Wiley & Sons, 1970.
4. Joshi M.C.,; George R.K. Controllability of Nonlinear Systems. Numerical Functional

10.

11.

12.

13.

14.

15.

16.

Analysis € Optimization, 1989, no. 10, pp. 139-166. doi:10.1080/01630568908816296

Klamka J. Schauder’s Fixed-Point Theorem in Nonlinear Controllability Problems.
Control and Cybernetics, 2020, vol. 29, pp. 153-165.

. Li Z.G., Wen Y., Soh Y.C. Analysis and Design of Impulsive Control. IFEE

Transaction on Automatic Control, 2001, vol. 46, no. 6, pp. 894-897.

George R.K. Approximate Controllability of Non-Autonomous Semilinear Systems.
Nonlinear Analysis: Theory, Methods € Applications, 1995, vol. 24, pp. 1377-1393.
DOI: 10.1016/0362-546X(94)E0082-R,

Klamka J., Babiarz A., Niezabitowski M. Banach Fixed-Point Theorem in Semilinear
Controllability Problems a Survey. Bulletin of the Polish Academy of Sciences,
Technical Sciences, 2016, vol. 64, no. 1, pp. 21-35. DOI: 10.1515/bpasts-2016-0004

Samei M.E., Rezapour S. On a System of Fractional Q-Differential Inclusions via Sum
of Two Multi-Term Functions on a Time Scale. Boundary Value Problems, 2020, vol.
2020, article ID: 135, 26 p. DOI: 10.1186/s13661-020-01433-1

Kalvandi V., Samei M.E. Mittag-Lefler-Hyers-Ulam-Rassias Stability of Cubic
Functional Equation. Mathematics and Computational Sciences, 2021, vol. 2, no. 3,
pp. 14-21. DOI: 10.30511/mcs.2021.532909.1027

Klamka J., Babiarz A., Niezabitowski M. Schauder’s Fixed Point Theorem in
Approximate Controllability Problems. International Journal of Applied Mathematics
and Computer Science, 2016, vol. 26, no. 2, pp. 263-275. DOI: 10.1515/amcs-2016-0018

Etemad S., Igbal 1., Samei M.E., Rezapour S., Alzabut J., Sudsutad W., Goksel I.
Some Inequalities on Multi-Functions for Applying Fractional Caputo—Hadamard Jerk
Inclusion System. Journal of Inequalities and Applications, 2022, article ID 84. DOI:
10.1186/s13660-022-02819-8

George R.K. Trajectory Controllability of 1-Dimensional Nonlinear Systems.
Proceedings of the Research Seminar in honor of Professor M.N. Vasavada, Anand,
India: S.P. University, 1996, vol. 1996, pp. 43-48.

Chalishajar D.N., George R.K., Nandkumaran A.K., Acharya F.S. Trajectory

Controllability of Nonlinear Integro-Differential System. Journal of The Franklin
Institute, 2010, vol. 347, no. 7, pp. 1065-1075. DOI: 10.1016/j.jfranklin.2010.03.014

Sandilya R., George R.K., Kumar S. Trajectory Controllability of a Semilinear
Parabolic System. The Journal of Analysis, 2020, vol. 28, pp. 107-115. DOI:
10.1007/s41478-017-0048-3

Shah V., Sharma J., George R.K. Existence and Uniqueness of Classical and Mild
Solutions of Fractional Cauchy Problem with Impulses. Malaya Journal of Matematik,
2023, vol. 11, no. 01, pp. 66-79. DOI: 10.26637/mjm1101/005

30

Journal of Computational and Engineering Mathematics



COMPUTATIONAL MATHEMATICS

17. Kataria H.R., Patel P.H., Shah V. Existence Results of Noninstantaneous Impulsive
Fractional Integrodifferential Equation. Demonstratio Mathematica, 2020, vol. 53, pp.
373-384. DOI: 10.1515/dema-2020-0029

18. Yue X.-G., Samei M.E., Fathipour A., Kaabar M.K.A., Kashuri A. Using
Krasnoselskii’s Theorem to Investigate the Cauchy and Neutral Fractional Q-Integro—
Differential Equation via Numerical Technique. Nonlinear Engineering: Modeling and
Application, 2022, vol. 11, pp. 207-227. DOI: 10.1515/nleng-2022-0023

19. Samei M.E.; Karimi L., Kaabar M.K.A. To Investigate a Class of Multi-Singular
Pointwise Defined Fractional Q-Integro—Differential Equation with Applications.
AIMS Mathematics? 2022, vol. 7, no. 5, pp. 7781-7816. DOI: 10.3934 /math.2022437

20. Rezapour S., Boulfoul A., Tellab B., Samei M.E., Etemad S., George R. Fixed Point
Theory and the Caputo-Liouville Integro-Differential FBVP with Multiple Nonlinear
Terms. Journal of Function Space, 2022, vol. 18. DOI: 10.1155/2022 /6713533

21. Shah V., Sharma J., Patel P.H. Trajectory Controllability of Dynamical Systems With
Non-Instantaneous Impulses. YEMR, vol. 2021, vol. 20, no. 11, pp. 371-381.

22. Shah V., Sharma J., Patel P.H., Kataria H.R. Trajectory Controllability of the Systems
Governed by Hilfer Fractional Systems. YMFER,2021, vol. 20, no. 11, pp. 37—46.

23. Sharma J., Ratanpal B.S., Pirzada U.M., Shah V., Chavada A. Study of Effect of Per-
turbation Due to Oblateness of Earth on Satellite. Proceeding of 19th Annual Cum 4th
International Conference of Gwalior Academy of Mathematical Sciences (GAMS), At
Sardar Vallabhbhat National Institute of Technology, 2021. vol. 19 no.4, pp. 439-442.

24. Trivedi G., Shah V. Sharma J., Sanghvi R. On the solution of non-instantaneous
impulsive Hilfer fractional integro-differential evolution system Mathematica
Applicanda, 2023. vol. 51 no. 1 pp 3-20.DOI:10.14708 /ma.v50i2.7168.

Vishant Shah, Ph.D., Assistant professor, Department of Applied Mathematics,
Faculty of Technology & Engineering, The Maharaja Sayajirao University of Baroda
(Vadodara, India), vishantmsu83@gmail.com

Jaita Sharma, Ph.D., Assistant professor, Department of Applied Mathematics,
Faculty of Technology & Engineering, The Maharaja Sayajirao University of Baroda
(Vadodara, India), jaita.sharma@qgmail.com

Mohammad Esmael Samei, Ph.D., Associate Professor, Department of Mathematics,
Faculty of Basic Science, Bu-Ali Sina University (Hamedan, Iran), mesamei@basu.ac.ir

Gargi Trivedi, Ph.D., Assistant professor, Department of Applied Mathematics,
Faculty of Technology € Engineering, The Maharaja Sayajirao University of Baroda
(Vadodara, India), gargil488@gmail.com

Received August 3, 2024

2024, vol. 11, no. 4 31



V. Shah, J. Sharma, M. E. Samei, GG. Trivedi

YAK 517.9, 519.216.2 DOI: 10.14529/jcem240403

TPAEKTOPHASA YIIPABJIIEMOCTD IIOJIVJIMHENHBIX
CUCTEM BTOPOI'O IIOPAJIKA C NCIIOJIb3OBAHVEM
OYHKIINMOHAJIBHO-AHAJINTNYECKOI'O ITOAXO/IA

B. IIlax', Howc. Ilapma', M. 3. Camet?, I. Tpusedu'
YVnusepcurer Maxapaizku Casyzkupao B Bapoge, r. Bajgonapa, Wnns
2Vuusepcurer Byamu Cuna, r. Xamamgan, Vpan

B mamuoii crarbe paccMarpuBaeTcs TpaeKTopHas yupasisemocth (TV). cucrem 3Bo-
JIIOITUU BTOPOTO TIOPSIJIKA C yIeTOM MMITYJIbcoB. st omucanus pe3ynbraToB TV ucmosb-
30BAJINCh KOCHHYCHOE€ CEMEHCTBO OIepaTOpPOB, IIPOU3BEICHHBIX JIMHEHHON COCTaBJIAIONIEH
CUCTEMBI, NHTETPaJbHas Bepcusi HepaBeHCTBa ['poHyosuta u njest HeJMHERHOTO (DYHKIMO-
HAJIBHOTO aHaJm3a. [IpuBeeHbl MPUJIOXKEHUsI JIJIT KOHEYHOMEPHBIX U OECKOHETHOMEPHBIX
CHCTEM CHCTeM C TPAeKTOPHBIM yIIpaBJICHUEM.

Karouesvie caosa: ynpasasemocms mpaexkmopuu; Hepasercmso I'DoHyoata; Aunuuyesa
HEAUHETHOCTID; HEeAUHETHDBLE CUCTEMDL.

Buwanm Ilax, douenm, xapedpa npursadnoti mamemamuru, Gaxyibmem merrono-
euu u unotcenepuu, Ynusepcumem Mazapadowcu Casdocupao 6 Bapode (2. Badodapa, Hn-
dus), vishantmsu83Qgmail.com

Jorcatima Illapma, douenm, kapedpa npursadnoti mamemamury, Pakysomem merHo-
A02uL U uncurupurea, Yrnusepcumem Maxapadocu Casdocupao 6 Bapode (2. Badodapa,
Wnous), jaita.sharam@gmail.com

Moxammad Scemasnv Cameu, douenm, xapedpa mamemamuru, daxysvmem dyrdam-
enmarvnoir nayx, Ynusepcumem By-Aau Cuna (2. Xamadan, Hpan), mesamei@basu.ac.ir

TI'apeu Tpusedu, douenm, xagedpa npursadnoti mamemamury, Garxysomem merroio-
euu u uHdtCcunupurea, Ynusepcumem Maxapadocu Casdotcupao 6 Bapode (2. Badodapa,
Hnous), gargil488Q@gmail.com

Iocmynuana 6 pedaxuyuro 3 aBrycra 2024 1.

32 Journal of Computational and Engineering Mathematics



