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The paper proposes a finite-difference method for solving a boundary value problem
for a hyperbolic equation describing the movement of blood in a blood vessel. The stability
conditions of the method are given, and numerical results are presented. The method allows
to track the amplitude and frequency of heartbeats in various modes, and a numerical model
can be used in the study of atrial fibrillation.
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Introduction

This paper is devoted to numerical treatment of the mathematical model of blood
flow in a blood vessel. To describe the pulse wave in this model, classical methods
of hydrodynamics are used in relation to the human cardiovascular system. From the
standpoint of classical hydrodynamics, the motion of any real medium is described by the
Navier-Stokes equation, which together with the equations of continuity, state and heat
balance form a closed system [1|. The problem is reduced to a partial differential equation
of the following form:

OV (x,t)  0°V(x,1) OV (z,t)
b 0w —  op +aV(m,t)T, x€|0,1], tel0,T] (1)
with specified initial and boundary conditions

The equation (1) is a nonlinear hyperbolic equation. Two types of partial solutions are
known for it and the self-similar solution [2], which are not suitable for practical use. In
this regard, the problem of constructing effective methods for the approximate solution of
such equations is urgent. A finite-difference scheme for such a problem is proposed in [3].
This paper is a development of the work [3] in relation to the analysis of the amplitude
and frequency of heartbeats in various modes, which is important in the study of atrial
fibrillation.

1. Finite-difference Approximation

In order to construct an approximate solution, we apply a finite-difference
approximation of the operator F'V = bV,, — V;; —aV'V,. Let us introduce a grid of uniform
nodes for each variable

l kT
ZN, i =N, ty ==, k=001, (;,ts) € [0,0] x [0,
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Denote V (z;,t;) = V¥, h= L, 7= L.
On the cross template we obtain the following finite-difference scheme

V(i te) _ Vi, —2VF + ViE,

_ 2
ox? B h?2 +O(1),
32V(xi, tk) ‘/ikJrl o 2‘/’Zk + ‘/ikfl )
o2 - 72 +O(77),
oV (x;,ty)  VFEH -yt o OV(zyty)  VETE_VE
— K 1 O g L v O .
- 4O or S — o)

The values of the unknown function at the grid points on the time layer %, are
determined from the initial data (2):

VO = gl(l'i), 1= O,N

2

For t = t; we have
Vo = filth), V' = 7ga() + VP, i =1, N — 1, Vy = folty).

Let us limit ourselves to infinitesimal accuracy of the second order. Then on the layer
k, k=2,3,...,M — 1, we have

b 1
Vo= filte), 73 VA =2V + VA ] = S5 [V —2vf + VA

o VEVER VI = 0N =T, VE = fulte)
T
Therefore
Vi = filty), VE = folty),
VE, —2VE+ VR — SV =2V + £VEVE
%+ £ VE

1

b _
Vi'““:"Q[ i=0,N—1.

Finally, we obtain
Vo' = filtr), V& = fa(t),
2072 (Vi) —2VFE + V) + 202 2VF — V) + arh2VEVH!
h? (2 + aﬂ/;k) ’

k+1 __
Vi =

(3)

i=0,N—1, k=2 M- 1.

The scheme (3) is an explicit difference scheme with accuracy order O(h? + 7). The
accuracy order of the time variable can be increased to O(h? + 72). To do this, we could
use a more accurate approximation on the first time layer based on the initial data (see,
for example, [4]). However, the above scheme (3) has an important advantage. There is no
need to solve nonlinear algebraic equations on each layer, so there are no problems with
branching solutions.
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1.1. Stability

The explicit difference scheme (3) is conditionally stable. Stability is achieved by
fulfilling the Courant condition (see, for example, [5]), linking the grid steps 7 and h in a
temporal and spatial variable, respectively, with the coefficients a and b of the equation
(1). In our case, a sufficient stability condition has the form br < h It should be noted
that in the problem of blood movement of interest to us, the parameter b takes sufficiently
large values and to fulfill this condition it is necessary to vary the step h. In order to avoid
this limitation, we will replace the variables in the equation (1):

Then the main equation takes the form

PPV(z,1)  V(z,7)

oV (z, 1)
022 or? '

+V(z,7) 5

The finite-difference scheme for the equation (4) is constructed in a similar way.

1.2. Numerical Example

To illustrate the convergence of the proposed numerical scheme, consider the following
model boundary value problem

V(0,t) = 6%5
V(I,t) = o=

- , xel0l],tel0,T], =1 T=1. 6
V(Z‘,O) — %%3’ [ ] [ ] ( )
Vi(#,0) = 5i3p

Here V(z,t) = ﬁ is the exact solution of the problem (5)—(6).
Table 1 shows the results of solving the problem (5)—(6). Here h is the grid step by

spatial variable, 7 is the grid step by time variable, ¢ = max \V (s, t1) — V.

Table 1

The error of the scheme at different grid steps
h| 0.5 0.2 0.1 0.05 0.01 0.005
0.25 | 0.04 0.01 | 0.0025 | 0.0001 | 0.000025
e | 0.001 | 0.0002 | 5.2e-5 | 1.3e-5 | 9.2e-7 | 2.4e-T

\]

The results of Table 1 confirm the theoretical error estimate e = O(h? 4 7).

2. The Problem of the Movement of Blood in a Blood Vessel

In this section, we will conduct a comparative analysis of solutions to the problem of
blood flow in a vessel in a rectangle (z,t) € [0,0.2] x [0, 2] obtained at different parameter
values.
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The model parameters that determine the coefficients of the equation (1), as well as
the initial and boundary conditions (2) (diastole time, rigidity of the vessel walls after
bifurcation, vessel radius, modulus of elasticity of the vessel wall, etc.) vary.

First, let us specify the parameters that kept constant values during calculations:

=02, T=21t=03n=2 P=2-10" A=0.04, v =04, § = 0.001,

E P
Bo=107% po =10 B = - w= ft B =92, =007, vy =6,
- s d
l E
= — S = 2 E’I‘ = — .

T UO’ 2 7TT07 D 1_,[_ 2ro

0E'fBo

Fig. 1. Pulse wave 1

Figure 1 shows the dependence of the pulse wave velocity on time for the case when
the diastole time is a fixed non-random value t; = 0.5. The variable parameters of the
boundary value problem here take the following values:

E=10°% v=3, 8=0.1, ro = 0.01.

| st

0 T T T T T T T T T T T T T T T

05 1 15
3

Fig. 2. Pulse wave 2

Figure 2 shows the case when the time of the diastole t; changes randomly within
[0.1,0.5]. It can be noted that the random nature of the change t; manifests itself in the
form of beats, while, as can be seen, the periodicity of the process is lost.
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Fig. 3. Pulse wave 3
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Fig. 4. Pulse wave 4

Fig. 5. Pulse wave 5

When changing the parameter v responsible for the rigidity of the vessel walls after
bifurcation, the amplitude of the beats changes slightly, as can be seen from the comparison
of Fig. 3 (y = 1.1) and Fig. 2 (v = 3).

With increasing rigidity of the vessel, the amplitude and frequency of beats change
markedly. This is evidenced by the comparison of Fig. 4 (F = 5-10°) and Fig. 2 (E = 10°).

With a decrease in the radius of the vessel ry, as can be seen from the comparison of
Fig. 5 (rp = 0.001) and Fig. 4 (ro = 0.01), the amplitude of the beats changes significantly
and their frequency increases.

Thus, the developed method makes it possible to track the amplitude and frequency
of heartbeats in various modes, and the numerical model can be applied in the study of
atrial fibrillation.
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UYNCJIEHHOE MOAEJIMPOBAHUE JIBN2KEHNA KPOBU
B KPOBEHOCHOM COCY/E

A. H. Twwnoa', A. A. INusxkuna'

ensenckuii rocynaperBennblit yausepenrert, r. [lensa, Poceniickas ®eepanus

B pabore npetoxken KOHEYHO-PA3HOCTHLINA METOJ PEIEHUs KPAEBO 3a/1a9u [JIsd TU-
1epbOJIMIECKOrO YPaBHEHNS, OIICHIBAIOIIErO JIBUYKEHNEe KPOBU B KPOBEHOCHOM cocyie. [la-
HBI YCJIOBUS YCTOMYUBOCTU METOJA, IPUBEJCHBI YUCJCHHBIE Pe3yabTaThl. MeTo 1 mo3BosiseT
OTCJIEJIUTH AMILUIATYIAY W YAaCTOTY OWEeHWil Cepilla B PA3JIMYHBIX DPEKUMAX, & UHCJIEHHAS
MOJIEJIb MOXKET OBITH IIPUMEHEHA IIPHU UCCIEJOBAHUN MEPIATEIHHON apUTMUMN.

Karouesvie caoga: Heaunetinoe 2unepbosuveckoe ypasHeHue; 2udpoduHamMura Kpogooo-
PAWEHUA; KOHEUHO-DAZHOCTIVHBIT MEMOO.
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