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The equations, which are not solved with respect to the highest derivative, are now

actively studied. Such equations are also called the Sobolev type equations. Note that

these equations in Banach spaces are studied quite well. Quasi-Sobolev spaces are quasi

normalized complete spaces of sequences. Recently these spaces began to be studied. The

interest to such spaces and its equations is connected with a desire to �ll up the theory

more than with practical applications.

The paper is devoted to the study of solvability of the Cauchy problem and the

Showalter � Sidorov problem for a class of equations considered in the quasi-Sobolev spases.

To this end we use properties of the equation operators, namely the relative boundedness

of the operators. To illustrate abstract results we consider an analogue of the Ho� equation

in the quasi-Sobolev spaces.

Keywords: Cauchy problem; Showalter � Sidorov problem; Sobolev type equation;

Laplase quasi-operator; analogue of the Ho� equation.

Introduction

Consider a class of equations having the following form:

Pn(Λ)u̇ = Qm(Λ)u, (1)

where Pn(x) =
n∑

i=0

cix
i, ci ∈ C, cn ̸= 0 and Qm(x) =

m∑
j=0

djx
j, dj ∈ C, dm ̸= 0 are

polynomials such that m ≤ n. Operator Λ : ℓr+2
q → ℓrq is Laplace quasi-operator [1],

operating in quasi-Sobolev sequence spaces [2]

ℓrq =

{
u = {uk} ⊂ R :

∞∑
k=1

(
λ

r
2
k |uk|

)q
< +∞

}
,

where r ∈ R and q ∈ (0, 1), and sequence {λk} ⊂ R+ is such that lim
k→∞

λk = +∞.

Equation (1) is the Sobolev type equation, because an operator in the right-hand side of
(1) can be equivalent to 0, see [3]. Sobolev-type equations in quasi-Banach spaces began
to be studied more recently [4]. The interest to such spaces and its equations is connected
with a desire to �ll up the theory, extending its results to these spaces, more than with
practical applications.

The paper is devoted to the questions about solvability of the Cauchy problem

u(0) = u0 (2)

for dynamic equations of form (1) in quasi-Sobolev spaces. Note that the solutions of
Cauchy problem (2) for equation (1) for all initial conditions do not always exist [3].
Therefore we also consider the Showalter � Sidorov problem [5]

P (u(0)− u0) = 0 (3)
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for heterogeneous equation (1), which solutions exist for all initial conditions. Here P is
some spectral projector [6].

The paper is organized as follows. Section 1 gives preliminary information about the
properties of operators in quasi Banach spaces, as well as about the relatively bounded
operator. Section 2 gives main result of the paper about solvability of Cauchy problem (2)
for equation (1) and Showalter � Sidorov problem (3) for heterogeneous equation (1).
Section 3 considers an analogue of the linearized Ho� equation [7]

(λ+ Λ)ut = αu, λ, α ∈ R

in quasi-Sobolev spaces. Note that reference list re�ects the tastes of the author and can
be supplemented.

1. Relatively Spectral Bounded Operators
in Quasi-Sobolev Spaces

Recall that quasi-Banach space is a complete quasinormed lineal. Let {λk} ⊂ R+ be
monotonic sequence such that lim

k→∞
λk = +∞, à q ∈ R+. Let

ℓrq =

{
u = {uk} ⊂ R :

∞∑
k=1

(
λ

r
2
k |uk|

)q
< +∞

}
.

Lineal ℓrq for all r ∈ R, q ∈ R+ with element quasinorm u = {uk} ∈ ℓrq

r
q∥u∥ =

(
∞∑
k=1

(
λ

r
2
k |uk|

)q)1/q

is quasi-Banach space (for q ∈ [1,+∞) � Banach space). In [2] spaces ℓmq are called quasi-
Sobolev ones. Note that there are dense and continuous embeddings ℓlq ↪→ ℓrq for r ≤ l.

Let (U; U∥ · ∥) and (F; F∥ · ∥) be quasi-Sobolev spaces. A linear operator L : U → F

with de�nitional domain domL = U is called continuous, if lim
k→∞

Luk = L
(
lim
k→∞

uk

)
for any

sequence {uk} ⊂ U, which converges in U. Note that in this case linear operator L : U → F
is continuous, if it is bounded (that is, it maps bounded sets in bounded ones). Denote by
L(U;F) a lineal (over the �eld R) of bounded linear operators � quasi-Banach space with
quasinorm

L(U;F)∥L∥ = sup
U∥u∥=1

F∥Lu∥.

Now let operators L,M ∈ L(U;F). Following [3, s. 2.1], we consider L-resolvent set
ρL(M) = {µ ∈ C : (µL − M)−1 ∈ L(F;U)} and L-spectrum σL(M) = C \ ρL(M) of
operator M . Similarly remark 2.1.2 [3], it is easy to show that a set ρL(M) is always open,
therefore L-spectrum σL(M) of operator M is always closed. Furthermore, if ρL(M) ̸= ⊘,
then L-resolvent (µL −M)−1 of operator M is analytic in ρL(M) [3, theorem 2.1.1]. We
call an operator M (L, σ)-bounded, if

∃a ∈ R+ ∀µ ∈ C (|µ| > a) ⇒ (µ ∈ ρL(M)).
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So let operator M be (L, σ)-bounded. Select the contour γ = {µ ∈ C : |µ| = h > a}
and construct the operators

P =
1

2πi

∫
γ

RL
µ(M)dµ and Q =

1

2πi

∫
γ

LL
µ(M)dµ,

where the integrals are Riman ones and exist by Theorem 2 [8] by the analyticity of right
RL

µ(M) = (µL − M)−1L and left LL
µ(M) = L(µL − M)−1 L-resolvents of operator M .

Also by the analyticity of RL
µ(M) and LL

µ(M), operators P and Q do not depend on the
radius h of contour γ. Similarly the proof of [3, Lemma 4.1.1], it is easy to see that the
operators P ∈ L(U) (≡ L(U;U)) and Q ∈ L(F) are projections. Let U0 = kerP , U1 = imP ,
F0 = kerQ, F1 = imQ; and denote by Lk (Mk) a restriction of the operator L (M) on Uk,
k = 0, 1.

Theorem 1. [4] Let operators L,M ∈ L(U;F), and operator M be (L, σ)-bounded. Then
(i) operators Lk,Mk ∈ L(Uk;Fk), k = 0, 1;
(ii) there exist operators L−1

1 ∈ L(F1;U1) and M−1
0 ∈ L(F0;U0).

Suppose that H = M−1
0 L0, S = L−1

1 M1. Obviously, operators H ∈ L(U0), S ∈ L(U1).

De�nition 1. An operator M is called
(i) (L, 0)-bounded, if H ≡ O;
(ii) (L, p)-bounded, if Hk ̸= O for k = 1, p, and Hp+1 ≡ O;
(iii) (L,∞)-bounded, if Hk ̸= O for k ∈ N.

2. Solvability of Initial Problems

Let U and F be quasi-Banach spaces, operators L,M ∈ L(U;F). Consider the linear
Sobolev type equation

Lu̇ = Mu. (4)

Vector function u ∈ C∞(R;U) is called a solution of equation (4), if it satis�es (4).
A solution u = u(t) of equation (4) is called a solution of Cauchy problem (2) for
equation (4) (brie�y, problem (2), (4)), if in addition it satis�es Cauchy condition (2)
for some u0 ∈ U. Similarly, a solution u = u(t) of equation (4) is called a solution of
Showalter � Sidorov problem (3) for equation (4) (brie�y, problem(3), (4)), if in addition
it satis�es Showalter � Sidorov condition (3) for some u0 ∈ U.

De�nition 2. A set P ⊂ U is called phase space of equation (4), if
(i) for any u0 ∈ P there exists a unique solution of problem (2), (4);
(ii) any solution u = u(t) of equation (4) is in P as a trajectory (that is, u(t) ∈ P for

all t ∈ R).

Theorem 2. Let operator M be (L, p)-bounded, p ∈ {0} ∪ N. Then phase space of
equation (4) is space U1.

Proof. By theorem 1, equation (4) equivalents to a system of two equations

Hu̇0 = u0, u̇1 = Su1, (5)
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where u0 = u0(t) ∈ U0 and u1 = u1(t) ∈ U1 for all t ∈ R. We di�erentiate the �rst equation
by t and apply operator H on the left, consistently get

0 = Hp+1 d
p+1

dtp+1
u0(t) = Hp d

p

dtp
u0(t) = . . . = Hu0(t) = u0(t).

So all solutions of equation (4) are in U1 as the trajectories. A unique solvability of the
problem u1(0) = u1

0 for the second equation (5) for any u1
0 ∈ U1 is obvious because of

a boundedness of the operator S ∈ L(U1).

2
We return to equation (1). Consider degrees of Laplace quasi-operators [9] Λnu =

{λ2n
k uk}, n ∈ N. It is easy to see that Λn : ℓr+2n

q → ℓrq is toplinear isomorphism, r ∈ R.

Select spaces U = ℓr+2n
q and F = ℓrq. Operators L = Pn(x) =

n∑
i=0

cix
i, ci ∈ C, cn ̸= 0

and M = Qm(x) =
m∑
j=0

djx
j, dj ∈ C, dm ̸= 0, � polynomials such that m ≤ n. Operators

L,M ∈ L(U;F) by construction.

Lemma 1. Let numbers λk be roots of the polynomial Pn(x) such that they are not roots
of the polynomial Qm(x). Then an operator M is (L, 0)-bounded.

Proof. To construct the relative spectrum it is necessary that the condition
kerL ∩ kerM = ⊘ holds [3]. Therefore it is necessary that the numbers λk, which are roots
of the polynomial Pn(x), are not roots of the polynomial Qm(x). The relative spectrum is
of the form

σL(M) =

{
µ ∈ C : µk =

Qm(λk)

Pn(λk)
, ïðè k : Pn(λk) ̸= 0

}
.

Points of the relative spectrum σL(M) tend to the end point, because λk → +∞ and
n ≥ m. Therefore, the set σL(M) is bounded.

Space

U0 =

{
{0}, if Pn(λk) ̸= 0 for all k ∈ N;
{u ∈ U : uk = 0, k ∈ N \ {l : Pn(λl) = 0}} ,

therefore operator H = M−1
0 L0 = 0. Consequently, the operator M is (L, 0)-bounded.

2
Let {U t : t ∈ R} be holomorphic degenerate group of operators, and U0 be its unit.

We consider an image imU• = imU0 and a kernel kerU• = kerU0 of this group. A group
{U t : t ∈ R} is called a resolving group of equation (4), if the following two conditions
holds. First, vector function u(t) = U tu0 is a solution of equation (4) for any u0 ∈ U.
Second, an image imU• coincides with the phase space of equation (4).

Theorem 3. [4] Let operator M be (L, p)-bounded, p ∈ {0}∪N. Then there exists a unique
group of solving operators for equation (4). This group is of the following form:

U t =
1

2πi

∫
γ

RL
µ(M)eµtdµ, t ∈ R,

where the contour γ = {µ ∈ C : |µ| = h > a}.
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By Lemma 1 and Theorem 3 it is easy to show that holomorphic group of solving
operators for equation (1) is of the following form:

U t· =


∞∑
k=1

eµkt⟨·, ek⟩ek, åñëè Pn(λk) ̸= 0, k ∈ N;∑
k ̸=l

eµkt⟨·, ek⟩ek, åñëè ñóùåñòâóåò l ∈ N : Pn(λl) = 0.

The phase space of equation (1) by Lemma 1 and Theorem 2 is a set

U1 =

{
U, åñëè Pn(λk) ̸= 0, k ∈ N;
{u ∈ U : ul = 0, Pn(λl) = 0}.

Remark 1. Under the hypotheses of Theorem 3, operators L and M on the space F
generate holomorphic degenerate group

F t =
1

2πi

∫
γ

LL
µ(M)eµtdµ −

group of solving operators for equation L(βL − M)−1ḟ = M(βL − M)−1f , where β ∈
ρL(M).

Consider Showalter � Sidorov problem (3) for the linear inhomogeneous dynamical
Sobolev-type equation

Lu̇ = Mu+ f, (6)

where the vector function f : [0, τ ] → U with τ ∈ R+ is de�ned below. Put f = f 0 + f 1,
f 1 = Qf and f 0 = f − f 1.

Theorem 4. [4] Let p ∈ {0}∪N, M be (L, p)-bounded operator, a vector function f = f(t)
with f 0 ∈ Cp+1((0, τ);F0) and f 1 ∈ C((0, τ);F1) as well as a vector u0 ∈ U. Then there
exists a unique solution u ∈ C1((0, τ);U) to problem (3) for equation (6), which in addition
is of the form

u(t) = −
p∑

k=0

HkM−1
0 f 0(k)(t) + U tu0 +

t∫
0

U t−sL−1
1 f 1(s) ds.

By Lemma 1 and Theorem 4 we have the following

Theorem 5. Let numbers λk be roots of the polynomial Pn(x) such that they are not
roots of the polynomial Qm(x), a vector function f = f(t) with f 0 ∈ Cp+1((0, τ);F0)
and f 1 ∈ C((0, τ);F1) as well as a vector u0 ∈ U. Then there exists a unique solution
u ∈ C1((0, τ);U) to problem (3) for equation Pn(Λ)u̇ = Qm(Λ)u+ f , which in addition is
of the form

u(t) =



∞∑
k=1

eµkt⟨u0, ek⟩+
t∫

0

⟨f(s), ek⟩
Pn(λk)

eµk(t−s)

 ek, åñëè Pn(λk) ̸= 0, ∀k ∈ N;

−
∑

l∈N:Pn(λl)=0

⟨f(t), el⟩
Qm(λl)

el +
∑
k ̸=l

eµkt⟨u0, ek⟩+
t∫

0

⟨f(s), ek⟩
Pn(λk)

eµk(t−s)

 ek.
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3. Ho�'s Equation in Quasi-Sobolev Spaces

Consider the analogue of linear Ho�'s equation [7]

(λ+ Λ)ut = αu+ f, λ, α ∈ R, (7)

in the quasi-Sobolev spaces U = ℓr+2
q and F = ℓrq with r ∈ R and q ∈ R+. In Banach spaces

such equation was investigated widely, see [10, 11, 12] for example. Take the operators
L = P1(Λ) = λ + Λ and M = Q0(Λ) = αI and reduce (7) to form (1). Moreover, by
Lemma 1 the operator M is an (L, 0)-bounded.

The phase spase of (7) has the form

U1 =

{
ℓr+2
q , if λk ̸= −λ for all k ∈ N;
{u ∈ ℓr+2

q : uk = 0, λk = −λ}.

In order to pose the Showalter � Sidorov problem, construct the projection P :

P =

 I, if λk ̸= −λ for all k ∈ N,
I−

∑
k∈N:k=l

ek, if λl = −λ for some l ∈ N

and similarly for the projection Q.
It is easy to construct the operator

L−1
1 =


∞∑
k=1

(λ+ λk)
−1ek, if λk ̸= −λ for all k ∈ N,∑

k∈N:k ̸=l

(λ+ λk)
−1ek, if λl = −λ for some l ∈ N.

By Theorem 5, for Showalter � Sidorov problem (3), (7) we have

Corollary 1. Let r, λ, α ∈ R, τ, q ∈ R+, u0 ∈ U, f 0 ∈ C1((0, τ);F0), and f 1 ∈
C((0, τ);F1). Then there exists a unique solution u ∈ C1((0, τ);U) to problem (3), (7);
moreover, it is of the form

u(t) =



∞∑
k=1

e
αt

λ+λk ⟨u0, ek⟩+
t∫

0

⟨f(s), ek⟩
λ+ λk

e
α(t−s)
λ+λk

 ek, if λk ̸= −λ, ∀k ∈ N;

−
∑

l∈N:λl=−λ

⟨f(t), el⟩
α

el +
∑
k ̸=l

e
αt

λ+λk ⟨u0, ek⟩+
t∫

0

⟨f(s), ek⟩
λ+ λk

e
α(t−s)
λ+λk

 ek,

here

F0 =

{
{0}, if λk ̸= −λ for all k ∈ N;
{f ∈ F : fk = 0, k ∈ N \ {l : λl = −λ}} ;

F1 =

{
F, if λk ̸= −λ for all k ∈ N;
{f ∈ F : fk = 0, λk = −λ}.
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ÐÀÇÐÅØÈÌÎÑÒÜ ÍÀ×ÀËÜÍÛÕ ÇÀÄÀ×
ÄËß ÎÄÍÎÃÎ ÊËÀÑÑÀ ÄÈÍÀÌÈ×ÅÑÊÈÕ ÓÐÀÂÍÅÍÈÉ
Â ÊÂÀÇÈÑÎÁÎËÅÂÛÕ ÏÐÎÑÒÐÀÍÑÒÂÀÕ

Ô.Ë. Õàñàí

Óðàâíåíèÿ, íå ðàçðåøåííûå îòíîñèòåëüíî ñòàðøåé ïðîèçâîäíîé, â íàñòîÿùåå âðå-

ìÿ ÿâëÿþòñÿ àêòèâíî èçó÷àåìîé îáëàñòüþ. Òàêèå óðàâíåíèÿ òàêæå íàçûâàþò óðàâ-

íåíèÿìè ñîáîëåâñêîãî òèïà. Â áàíàõîâûõ ïðîñòðàíñòâàõ òàêèå óðàâíåíèÿ èçó÷åíû

äîâîëüíî ïîëíî. Êâàçèñîáîëåâû ïðîñòðàíñòâà � ýòî êâàçèíîðìèðóåìûå ïîëíûå ïðî-

ñòðàíñòâà ïîñëåäîâàòåëüíîñòåé. Ýòè ïðîñòðàíñòâà íà÷àëè èçó÷àòüñÿ ñîâñåì íåäàâíî.

Èíòåðåñ ê òàêèì ïðîñòðàíñòâàì è óðàâíåíèÿì â íèõ ïðîäèêòîâàí íå ñòîëüêî ïðàêòè-

÷åñêèìè ïðèëîæåíèÿìè, ñêîëüêî æåëàíèåì ïîïîëíèòü òåîðèþ.

Â äàííîé ðàáîòå èçó÷àåòñÿ ðàçðåøèìîñòü çàäà÷ Êîøè è Øîóîëòåðà � Ñèäîðîâà

äëÿ îäíîãî êëàññà óðàâíåíèé, ðàññìàòðèâàåìûõ â êâàçèñîáîëåâûõ ïðîñòðàíñòâàõ. Ïðè

ýòîì èñïîëüçîâàëèñü ñâîéñòâà îïåðàòîðîâ óðàâíåíèÿ, à èìåííî îòíîñèòåëüíóþ îãðà-

íè÷åííîñòü îïåðàòîðîâ. Â êà÷åñòâå èëëþñòðàöèè àáñòðàêòíûõ ðåçóëüòàòîâ ðàññìîòðåí

àíàëîã óðàâíåíèÿ Õîôôà â êâàçèñîáîëåâûõ ïðîñòðàíñòâàõ.

Êëþ÷åâûå ñëîâà: çàäà÷à Êîøè; çàäà÷à Øîóîëòåðà � Ñèäîðîâà; óðàâíåíèÿ ñîáîëåâ-

ñêîãî òèïà; êâàçèîïåðàòîð Ëàïëàñà; àíàëîã óðàâíåíèÿ Õîôôà.
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