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The equations, which are not solved with respect to the highest derivative, are now
actively studied. Such equations are also called the Sobolev type equations. Note that
these equations in Banach spaces are studied quite well. Quasi-Sobolev spaces are quasi
normalized complete spaces of sequences. Recently these spaces began to be studied. The
interest to such spaces and its equations is connected with a desire to fill up the theory
more than with practical applications.

The paper is devoted to the study of solvability of the Cauchy problem and the
Showalter — Sidorov problem for a class of equations considered in the quasi-Sobolev spases.
To this end we use properties of the equation operators, namely the relative boundedness
of the operators. To illustrate abstract results we consider an analogue of the Hoff equation
in the quasi-Sobolev spaces.
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Introduction

Consider a class of equations having the following form:
P,(A)i = Qm(A)u, (1)

where P,(z) = Y ca', ¢; € C, ¢, # 0 and Qu(z) = >.d;a?, d; € C, d,,, # 0 are
i=0 7=0

polynomials such that m < n. Operator A : €2+2 — £y is Laplace quasi-operator [1],

operating in quasi-Sobolev sequence spaces |2|

by = {u ={ux} CR: i (Ag|uk|)q < —1—00} ,

k=1
where 7 € R and ¢ € (0,1), and sequence {\;} C R, is such that klim A = +oo.
—00

Equation (1) is the Sobolev type equation, because an operator in the right-hand side of
(1) can be equivalent to 0, see [3]. Sobolev-type equations in quasi-Banach spaces began
to be studied more recently [4]. The interest to such spaces and its equations is connected
with a desire to fill up the theory, extending its results to these spaces, more than with
practical applications.

The paper is devoted to the questions about solvability of the Cauchy problem

u(0) = ug (2)

for dynamic equations of form (1) in quasi-Sobolev spaces. Note that the solutions of
Cauchy problem (2) for equation (1) for all initial conditions do not always exist [3].
Therefore we also consider the Showalter — Sidorov problem [5]

P(u(0) —ug) =0 (3)
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for heterogeneous equation (1), which solutions exist for all initial conditions. Here P is
some spectral projector [6].

The paper is organized as follows. Section 1 gives preliminary information about the
properties of operators in quasi Banach spaces, as well as about the relatively bounded
operator. Section 2 gives main result of the paper about solvability of Cauchy problem (2)
for equation (1) and Showalter — Sidorov problem (3) for heterogeneous equation (1).
Section 3 considers an analogue of the linearized Hoff equation [7]

A+ ANuy = au, MaeR

in quasi-Sobolev spaces. Note that reference list reflects the tastes of the author and can
be supplemented.

1. Relatively Spectral Bounded Operators
in Quasi-Sobolev Spaces

Recall that quasi-Banach space is a complete quasinormed lineal. Let {\;} C Ry be
monotonic sequence such that klim A = +00,aq€R,. Let
—00

by = {u ={ux} CR: i ()\E|uk|)q < —i—oo} :
k=1

Lineal £ for all r € R, ¢ € R with element quasinorm u = {uz} € {

0 . . 1/q
lull = (Z (A2l )
k=1

is quasi-Banach space (for ¢ € [1,+00) — Banach space). In [2] spaces (" are called quasi-
Sobolev ones. Note that there are dense and continuous embeddings 651 — Ly for r <[
Let (4 ¢|| - ||) and (F; 5| - ||) be quasi-Sobolev spaces. A linear operator L : i — §

T
q

with definitional domain domL = il is called continuous, if klim Luy =L <khm uk> for any
—00 —00

sequence {ug} C L which converges in 4. Note that in this case linear operator L : 4 — §
is continuous, if it is bounded (that is, it maps bounded sets in bounded ones). Denote by
L(;§) a lineal (over the field R) of bounded linear operators — quasi-Banach space with
quasinorm

cwpll Ll = sup gl Lul.
al[ul|=1

Now let operators L, M € L(;F). Following [3, s. 2.1], we consider L-resolvent set
pE(M) = {p € C: (uL — M)™! € L(F;4)} and L-spectrum ol (M) = C\ pt(M) of
operator M. Similarly remark 2.1.2 [3], it is easy to show that a set p”(M) is always open,
therefore L-spectrum o (M) of operator M is always closed. Furthermore, if p*(M) # ©,
then L-resolvent (uL — M)™! of operator M is analytic in p”(M) |3, theorem 2.1.1]. We
call an operator M (L, o)-bounded, if

Ja € Ry Vu e C (Jul >a) = (nep"(M)).
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So let operator M be (L, o)-bounded. Select the contour v = {u € C: |u| = h > a}
and construct the operators

1

L L

Y v

1
P:—_
211

where the integrals are Riman ones and exist by Theorem 2 [8] by the analyticity of right
RY(M) = (uL — M)7'L and left L (M) = L(uL — M)™" L-resolvents of operator M.
Also by the analyticity of R[Z(M) and Lﬁ(M), operators P and @ do not depend on the
radius h of contour 5. Similarly the proof of |3, Lemma 4.1.1], it is easy to see that the
operators P € L(4) (= L(L; ) and Q € L(F) are projections. Let 4 = kerP, ' = im P,
0 = kerQ, §' = imQ; and denote by Ly (M}) a restriction of the operator L (M) on U,
k=0,1.

Theorem 1. [4] Let operators L, M € L(;§), and operator M be (L, o)-bounded. Then
(i) operators Ly, My € L(U*;T%), k=0,1;
(i) there exist operators L7 € L(F4;UY) and My ' € L(F%; U°).

Suppose that H = MLy, S = L;*M;. Obviously, operators H € £(U°), S € L(U).

Definition 1. An operator M is called
(i) (L,0)-bounded, if H = Oy
(ii) (L, p)-bounded, if H* # Q for k = 1,p, and HP*' = O;
(iii) (L, 00)-bounded, if H* # O for k € N.

2. Solvability of Initial Problems

Let 4 and § be quasi-Banach spaces, operators L, M € L(i;§). Consider the linear
Sobolev type equation
Li = Mu. (4)

Vector function v € C®(R;4) is called a solution of equation (4), if it satisfies (4).
A solution u = wu(t) of equation (4) is called a solution of Cauchy problem (2) for
equation (4) (briefly, problem (2), (4)), if in addition it satisfies Cauchy condition (2)
for some uy € 4. Similarly, a solution u = u(t) of equation (4) is called a solution of
Showalter — Sidorov problem (3) for equation (4) (briefly, problem(3), (4)), if in addition
it satisfies Showalter — Sidorov condition (3) for some ug € 4l

Definition 2. A set 8 C i is called phase space of equation (4), if

(i) for any ugp € B there exists a unique solution of problem (2), (4);

(ii) any solution u = u(t) of equation (4) is in P as a trajectory (that is, u(t) € P for
all ¢ € R).

Theorem 2. Let operator M be (L,p)-bounded, p € {0} UN. Then phase space of
equation (4) is space $A*.

Proof. By theorem 1, equation (4) equivalents to a system of two equations

Hu® = u°, ut = Sul, (5)
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where u® = u%(t) € U° and u' = u'(t) € U for all t € R. We differentiate the first equation
by t and apply operator H on the left, consistently get

dr+1 dp
——u'(t) = Hp%uo(t) =...=Hu(t) = d°1).

So all solutions of equation (4) are in U' as the trajectories. A unique solvability of the
problem u'(0) = u} for the second equation (5) for any u} € U' is obvious because of
a boundedness of the operator S € L(*).
O
We return to equation (1). Consider degrees of Laplace quasi-operators [9] A"u =
{\ur}, n € N It is easy to see that A™ : /7" — (7 is toplinear isomorphism, r € R.

Select spaces U = £;t?" and § = . Operators L = P,(z) = Y ¢ia’, ¢; € C, ¢, # 0
i=0

and M = Q,(z) = > d;a?, d; € C, d,, # 0, — polynomials such that m < n. Operators
7=0

L, M € L(;F) by construction.

Lemma 1. Let numbers \; be roots of the polynomial P,(x) such that they are not roots
of the polynomial Q,,(x). Then an operator M is (L, 0)-bounded.

Proof.  To construct the relative spectrum it is necessary that the condition
ker L Nker M = @ holds [3]. Therefore it is necessary that the numbers Ay, which are roots
of the polynomial P,(z), are not roots of the polynomial @Q,,(z). The relative spectrum is
of the form

5 I
B P

Points of the relative spectrum ol (M) tend to the end point, because A\ — 400 and
n > m. Therefore, the set o (M) is bounded.
Space

UL(M):{ueCzuk: m:a@@;ﬁo}.

g0 [ {0} P £ 0 forall k€N
Sl {ueliu, =0, ke N\{l: P,(\)=0}},

therefore operator H = My 'Ly = 0. Consequently, the operator M is (L,0)-bounded.

O

Let {U' : t € R} be holomorphic degenerate group of operators, and U be its unit.

We consider an image imU® = imU° and a kernel kerU® = kerU" of this group. A group

{U" . t € R} is called a resolving group of equation (4), if the following two conditions

holds. First, vector function u(t) = U'ug is a solution of equation (4) for any uy € 4.
Second, an image imU*® coincides with the phase space of equation (4).

Theorem 3. [4] Let operator M be (L, p)-bounded, p € {0}UN. Then there exists a unique
group of solving operators for equation (4). This group is of the following form:
1
U'=— | RE(M)etdu, teR,
2mi ’
g

where the contour v ={p € C: |u| =h > a}.
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By Lemma 1 and Theorem 3 it is easy to show that holomorphic group of solving
operators for equation (1) is of the following form:

o0

Zeukt<'>€k>€k, ecin P,(A\) #0, k€ N;

k=1
- et(. ep)eg, ecan cymectsyer [ € N: P,()\) = 0.
k£l

Ut. =

The phase space of equation (1) by Lemma 1 and Theorem 2 is a set

ol — U, ecm P,(M\g) #0, keN;
{ueid: u =0, P,(\)=0}.
Remark 1. Under the hypotheses of Theorem 3, operators L and M on the space §
generate holomorphic degenerate group
1

i
5

F'= LE(M)ettdp  —

group of solving operators for equation L(BL — M)~'f = M(BL — M)~ f, where § €
L
p=(M).

Consider Showalter — Sidorov problem (3) for the linear inhomogeneous dynamical
Sobolev-type equation
Li= Mu + f, (6)
where the vector function f : [0,7] — U4 with 7 € R, is defined below. Put f = f° + f1,
fl=Qf and f*=f — f.
Theorem 4. [4] Let p € {0}UN, M be (L, p)-bounded operator, a vector function f = f(t)
with 0 € CPT((0,7);3°) and f1 € C((0,7); ) as well as a vector ug € k. Then there

exists a unique solution uw € C*((0,7);48) to problem (3) for equation (6), which in addition
s of the form

t
p
- ZHkMO—IfO(k)(t) + UtUO + / Ut—sLl—lfl(S) ds
k=0 0

By Lemma 1 and Theorem 4 we have the following

Theorem 5. Let numbers A\, be roots of the polynomial P,(z) such that they are not
roots of the polynomial Q,,(x), a vector function f = f(t) with f° € CPT1((0,7);3")
and f' € C((0,7);F") as well as a vector ug € Y. Then there exists a unique solution
u € CY((0,7);80) to problem (3) for equation P,(A)u = Q(AN)u+ f, which in addition is
of the form

_ n\\k
u(ty=¢ 0
t
. (f()a)\61> et 3 | e o, e +/ (5 K pn(t-s) o
[ leN:P.(\)=0 Qm(A) kAL ] Fu(
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3. Hoff’s Equation in Quasi-Sobolev Spaces

Consider the analogue of linear Hoff’s equation 7]
A+ MNuy = au+ f, A a€R, (7)

in the quasi-Sobolev spaces LU = €Z+2 and § = (7 with r € R and ¢ € R,. In Banach spaces
such equation was investigated widely, see [10, 11, 12| for example. Take the operators
L =P (A) =X+ Aand M = Qy(A) = ol and reduce (7) to form (1). Moreover, by
Lemma 1 the operator M is an (L, 0)-bounded.

The phase spase of (7) has the form

S — €;+2, if \p # =X forall k e N;
N {U€€Z+2 cu, =0, )\k:—/\}

In order to pose the Showalter — Sidorov problem, construct the projection P:

I, if Ay # —\ for all k € N,
P=93 11— Y e, if A =—)forsomel€eN
keN:k=I

and similarly for the projection Q).
It is easy to construct the operator

o

DA+ M) e, A £ —Aforall k€N,
Lt = k=1
> (A+ M) ler, if A= —) for some [ € N.
keN:k£l

By Theorem 5, for Showalter — Sidorov problem (3), (7) we have

Corollary 1. Let r\,a € R, 7,q € Ry, up € 4, f° € C'Y(0,7);3°), and f' €
C((0,7);F"). Then there erists a unique solution u € CY((0,7);40) to problem (3), (7);
moreover, it is of the form

t
00

ot a(t s)
3 ew<uO,ek>+/W6 S en AN VEEN;
k
k=1
u(t) = 0 t
a(t—s)
N Z Ytt)e) el+z 6*“/@ {ug €k>+/<f<$)7ek_>€”% €k,
A+ A
[ lEN:=-A k#l 0

here
30_{ {0}, if A\, # =X forall k e N;
T {fEF =0, keN\{l: N =-A}}:

Sl_{s, if A\, # —A for all k € N;
T {fET =00 =2}
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PA3PEIIIMIMOCTD HAYAJLHBIX 3AAY
TIJISI OTHOT'O KJIACCA TMHAMUYECKUX YPABHEHUI
B KBA3UMCOBOJIEBLIX TTIPOCTPAHCTBAX

@.JI. Xacan

VpaBHeHusi, He pa3pelleHHbIEe OTHOCHTEIbHO CTAPIIEH IPOU3BOAHOMN, B HACTOSIIIEE BPe-
Ml SBJIIOTCS aKTUBHO M3y4daemoil obsiacrbio. Takue ypaBHEHMS TakKe HA3bIBAIOT ypap-
HEHUSMU CODOJIEBCKOrO THMA. B 6aHAXOBLIX MPOCTPAHCTBAX TAKUE YPABHEHUS U3YUYEHBI
J0BOJIbHO TIOsTHO. KBa3ucobo/eBbl MPOCTPAHCTBA — 9TO KBA3WHOPMUDYEMbIE MOJHBIE TPO-
CTPAHCTBA IOCJIEI0BATENbHOCTEH. DTH IIPOCTPAHCTBA HAYAIU U3YydaThCA COBCEM HEIABHO.
Wurepec K TaKMM NPOCTPAHCTBAM U yPAaBHEHHMAM B HUX IPOJUKTOBAH HE CTOJBKO IIPAKTH-
YEeCKUMU IIPUJIOKEHUAME, CKOJIBKO 2KEJIAHUEM IIOIIOJHUTh TEOPUIO.

B nammoii pabore usyuaercsa paspermumocts 3anad Komu u Iloyonrepa — Cumoposa
JIJTST OJTHOTO KJIACCA YPABHEHUH, paccMaTPUBAEMBIX B KBA3UCODOIEBBIX MpOCTpaHCcTBax. [Ipu
9TOM HCIOJIL30BAJNCH CBONHCTBA OMEPATOPOB YPABHEHUS, & MMEHHO OTHOCHUTEILHYIO Orpa-
HUYEHHOCTH OIIepaTopoB. B KauecTBe MILIIOCTpaIny abCTPAKTHBIX PE3YILTATOB PACCMOTPEH
aHaJor ypaHeHus Xodda B KBA3UCOOOIEBBIX TPOCTPAHCTBAX.

Kamoueene caosa: sadaua Kowu; sadavwa Hloyoamepa — Cudoposa; ypasnenus cobones-

ck020 muna; xeasuonepamop Jlanaaca; ananoe ypasnerus Xogda.
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