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We consider a limiting description of control in a Gaussian one-armed bandit problem

in application to batch processing of big data, if estimates of unknown mathematical

expectation and variance of one-step incomes are performed during data processing within

batches. This description is given by a second-order partial differential equation in which

the estimate of the unknown variance is present as a constant parameter. This result means

that when processing big data, an arbitrarily accurate estimate of the unknown variance

can be obtained at a relatively arbitrarily short initial stage, and then used for control.
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Introduction

In this article, we develop the ideas considered in [1, 2], where a background of this
approach and some references are given (see, e.g., [3, 4]). Let’s recall briefly the results of
[1, 2]. We study the optimization of batch data processing in the framework of a Gaussian
one-armed bandit problem if there are two alternative processing methods with known
efficiency of the first mathod. In this case, processed data is divided into sufficiently large
equal batches, all the data in the same batch are processed by the same method (action)
and processing results (e.g., the numbers of successfully processed data in batches) are used
for the control. The goal is to maximize (in some sense) the mathematical expectation of
successfully processed data which is interpreted as total expected income.

Formally, the Gaussian one-armed bandit is a controlled random process ξn, n =
1, 2, . . . , N , which values are interpreted as random incomes, depend only on the currently
chosen actions yn (yn ∈ {1, 2}) and have a Gaussian distribution density fD(x|m) =
(2πD)−1/2 exp(−(x − m)2/(2D)) if the second action is chosen. Here m, D are the
mathematical expectation and variance of one-step income for choosing the second action.
The mathematical expectation of income for the choice of the first action is known and,
without loss of generality, is zero. So, a one-armed bandit is described by the parameter
θ = (m,D), which is assumed to be a priori unknown. Note that the Gaussian distribution
of incomes is a consequence of batch data processing.

A control strategy σ at the point of time n + 1 performs a choice of action yn+1

depending on the current history of the process. A regret

LN(σ, θ) = N max(0, m)− Eσ,θ

(

N
∑

n=1

ξn

)

characterizes the mathematical expectation of the loss of cumulative income relative to its
maximum possible value in the presence of complete information. Here Eσ,θ is a sign of
mathematical expectation if σ and θ are fixed.
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Let’s consider a set of admissible parameters Θ = {(m,D) : |m| ≤ C < +∞, 0 < D ≤
D ≤ D < +∞} and a prior distribution density λ(θ) on it. A Bayesian risk is defined as

RB
N (λ) = inf

{σ}

∫

Θ

LN(σ, θ)dθ, (1)

the corresponding optimal strategy is called the Bayesian strategy. Bayesian strategy and
risk can be found by solving backwards the Bellman recursive equation. Bayesian approach
to the one-armed bandit problem was previously considered in [5, 6] for a Bernoulli one-
armed bandit which incomes have values 0 and 1, in [6] the limiting description of control
by the second order partial differential equation was obtained. In [1, 2] the Bayesian
approach was applied to a Gaussian one-armed bandit with both unknown mathematical
expectation and variance of one-step incomes: in [1] the estimation of unknown variance
was performed using the incomes inside batches and in [2] it was done based on the
cumulative incomes in batches.

This article is devoted to a limiting description of control in the one-armed bandit
problem if the estimation of unknown variance is performed using the incomes inside
batches. As in [7], where such a limiting description is obtained if the estimation of
unknown variance is performed using the cumulative incomes in batches, this description
is given by the same second-order partial differential equation in which the estimate of
unknown variance is present as a constant parameter. This means that when processing
big data, regardless of how the variance is estimated, an arbitrarily accurate estimate of
the unknown variance can be obtained at a relatively arbitrarily short initial stage, and
then used for the control.

The rest of the article is as follows. In section 1, recursive equations are obtained for
computing Bayesian strategy and risk in the usual and invariant forms. This equations
are equivalent to those obtained in [1] but more convenient for passing to the limiting
description. In section 2, using the invariant recursive equation, we obtain the limiting
description of control by the second order partial differential equation. The conclusion is
presented in section 3.

1. Recursive Equations for Finding Bayesian Risks and Strategies

We assume that the processing is carried out in batches of the size M ≥ 2 and the
variance estimation is performed during data processing within batches. The number of
batches and, accordingly, the number of processing stages is K, the total number of data
is N = KM . We also assume that at the beginning of control the second action is applied
at least k0 ≥ 1 times. Note that if k0 ≪ K then this strategy is close to optimal.

Let’s consider how to recalculate the sufficient statistics which are the total income X
and s2-statistics S. Let k ≥ k0 be the current number of processed batches and, therefore,
n = kM be the current total number of processed data. If x1, . . . , xn and xn+1, . . . , xn+M

are the data incomes in the first k batches and in the (k + 1)th batch respectively, then

X =

n
∑

i=1

xi, S =

n
∑

i=1

x2i −X2/n, Y =

n+M
∑

i=n+1

xi, U =

n+M
∑

i=n+1

x2i − Y 2/M

are total income and s2-statistics in the first k batches and in the (k+1)th batch. Therefore,
the new values of total income and s2-statistics are recalculated according to the following

12 Journal of Computational and Engineering Mathematics



COMPUTATIONAL MATHEMATICS

formulas

Xnew =
n+M
∑

i=1

xi = X + Y, Snew =

(

n+M
∑

i=1

x2i

)

− (X + Y )2

n+M
= S +∆+ U,

where ∆ = Y 2/M +X2/n− (X + Y )2/(n+M) = (MX − nY )2/(nM(n+M)). Thus, the
recalculation of statistics is carried out according to the formulas

X ← X + Y, S ← S +∆+ U, with ∆ =
(X − kY )2

Mk(k + 1)
. (2)

Consider a chi-squared distribution density with k degrees of freedom

χ2
k(x) = {2k/2Γ (k/2)}−1x

k

2
−1e−

x

2 , x ≥ 0, k ≥ 1.

Denote by D′ = MD and m′ = Mm the variance and the mathematical expectation of
income for processing the batch. Let’s introduce the functions

fkD′(X|km′) =
1√

2πkD′
exp

(

−(X − km
′)2

2kD′

)

, ψkM−1(S/D) = (D)−1χ2
kM−1(S/D).

If k ≥ k0, these functions describe the probability density functions of cumulative income
X and s2-statistics S computed after processing k batches. Since X and S are independent
random variables, then

F(X,S|m,D) = fMD(X|Mm)ψM−1 (S/D) (3)

describes the distribution density of X, S, corresponding to processing one batch.
Given a prior distribution density λ(m,D), the posterior distribution density is

λ(m,D|X,S, k) = fkD′ (X|km′)ψkM−1 (S/D)λ(m,D)

P (X,S, k)
,

with P (X,S, k) =

∫∫

Θ

fkD′ (X|km′)ψkM−1 (S/D)λ(m,D)dmdD.

However, it can be defined in the following equivalent way. Denote

F̃(X,S, k|m,D) = (D)−3/2f̃kD′(X|km′)ψ̃Mk−1 (S/D) , (4)

where

f̃D(x|m) = exp
(

−(x−m)2/(2D)
)

,

ψ̃kM−1(s) = (kM/(4π))1/2 (s/(kM))
kM−3

2 e−(s−kM)/2.
(5)

Then, given a prior distribution density λ(m,D), the posterior distribution density is

λ(m,D|X,S, k) = F̃(X,S, k|m,D)λ(m,D)

P̃ (X,S, k)
,

with P̃ (X,S, k) =

∫∫

Θ

F̃(X,S, k|m,D)λ(m,D)dmdD.
(6)
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To present the recursive equation for finfing Bayesian strategy and risk, we will use
the following property of the optimal strategy which was first established in [5] and was
already used in [1, 2] and [7]. Since the applying the first action does not give additional
information (the corresponding distribution is known), then once it has been chosen it will
be applied until the end of the control. Denote by RB(X,S, k) = RB

K−k(λ(m,D|X,S, k) the
Bayesian risk computed on the control horizon K − k with respect to a prior distribution
density λ(m,D|X,S, k). Denote m+ = max(m, 0), m− = max(−m, 0). Taking into account
(2)–(3), the standard dynamic programming equation has the form

RB(X,S, k) = min
(

RB
1 (X,S, k), R

B
2 (X,S, k)

)

, (7)

where RB
1 (X,S, k) = RB

2 (X,S, k) = 0 if k = K and

RB
1 (X,S, k) = (K − k)

∫∫

Θ

Mm+λ(m,D|X,S, k)dmdD,

RB
2 (X,S, k) =

∫∫

Θ

λ(m,D|X,S, k)×
(

Mm− (8)

+

∞
∫

0

∞
∫

−∞

RB(X + Y, S +∆+ U, k + 1)F(Y, U |m,D)dY dU
)

dmdD

if k0 ≤ k < K. Bayesian risk (1) is

RN(λ) = k0

∫∫

Θ

Mm−λ(m,D)dmdD +

∞
∫

0

∞
∫

−∞

RB(X,S, k0)P (X,S, k0)dXdS. (9)

Here RB
ℓ (X,S, k) characterizes the expected loss on the control horizon K − k if the ℓth

action is applied first and then the control is carried out optimally. When processing the
(k+1)th batch, the Bayesian strategy prescribes choosing an action corresponding to the
current smaller value RB

1 (X,S, k), R
B
2 (X,S, k); in the case of a draw, the choice can be

arbitrary. Once the first action has been chosen, it will be applied until the end of the
control.

Let’s present equation (7)–(9) in a more convenient for computations form. We put
Rℓ(X,S, k) = RB

ℓ (X,S, k)× P̃ (X,S, k), ℓ = 1, 2, where P̃ (X,S, k) is given in (6).

Theorem 1. To determine the Bayesian risk, one should solve a recursive equation

R(X,S, k) = min (R1(X,S, k), R2(X,S, k)) , (10)

where R1(X,S, k) = R2(X,S, k) = 0 if k = K and

R1(X,S, k) =M(K − k)G1(X,S, k),

R2(X,S, k) =MG2(X,S, k) (11)

+

∞
∫

0

∞
∫

−∞

R(X + Y, S +∆+ U, k + 1)H(X,S, k, Y, U)dY dU
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if k0 ≤ k < K. Here

G1(X,S, k) =

∫∫

Θ

m+
F̃(X,S, k|m,D)λ(m,D)dmdD,

G2(X,S, k) =

∫∫

Θ

m−
F̃(X,S, k|m,D)λ(m,D)dmdD

(12)

and

H(X,S, k, Y, U) =
C(k,M)

S3/2
× S(kM)/2U (M−3)/2

(S +∆+ U)((k+1)M−3)/2
, (13)

with C(k,M) =

(

1

2MMπ

)1/2

× 1

Γ(M−1
2

)
×
(

k + 1

k

)
kM−4

2
(

(k + 1)M

e

)
M

2

.

When processing the (k + 1)th batch, the Bayesian strategy prescribes to choose an
action corresponding to the current smaller value R1(X,S, k), R2(X,S, k); in the cade of
a draw, the choice can be arbitrary. Once the first action has been chosen, it will be applied
until the end of the control. Bayesian risk (1) is

RN(λ) = k0

∫∫

Θ

Mm−λ(m,D)dmdD +H0

∞
∫

0

∞
∫

−∞

R(X,S, k0)dXdS (14)

with H0 =
2

(k0M)5/2
× 1

Γ(k0M−1
2

)
×
(

k0M

2e

)

k0M
2

.

Proof. The proof is similar to the proof of theorem 1 in [1]. One should multiply the left-
hand and right-hand sides of the equation (7)–(8) by P̃ (X,S, k) in (6) and get (10)–(11),
where G1(X,S, k), G2(X,S, k) are described by (12). Formulas (13), (14) can be obtained
after performing transformations in the expressions

H(X,S, k, Y, U) =
F̃(X,S, k|m,D)F(Y, U |m,D)

F̃(X + Y, S +∆+ U, k + 1|m,D)
,

H0 =
P (X,S, k0)

P̃ (X,S, k0)
=

fk0D′(X|k0m′)ψk0M−1(S/D)

(D)−3/2f̃k0D′(X|k0m′)ψ̃k0M−1(S/D)
.

2

Let’s obtain an invariant form of formulas (10)–(14). We take the set of parameters
ΘN = {(m,D) : D ≤ D ≤ D, |m| ≤ c(D/N)1/2}, where c > 0, 0 < D ≤ D ≤ D < ∞.
If one puts D = βD, m = α(D/N)1/2, then the set of parameters takes the form ΘN =
{(α, β) : D/D = β0 ≤ β ≤ 1, |α| ≤ c}.

Consider the change of variables: X = x(DN)1/2, Y = y(DN)1/2, S = skMD,
U = ukMD, k = tK, k0 = t0K, M/N = K−1 = ε, λ(m,D) = (N/D 3)1/2̺(α, β),
Rℓ(X,S, k) = (DN)1/2(D)−3/2rℓ(x, s, t), ℓ = 1, 2. Then the following theorem is valid.

2025, vol. 12, no. 1 15



A. V. Kolnogorov

Theorem 2. To determine the Bayesian risk, one should solve a recursive equation

r(x, s, t) = min (r1(x, s, t), r2(x, s, t)) , (15)

where r1(x, s, t) = r2(x, s, t) = 0 if t = 1 and

r1(x, s, t) = (1− t)g1(x, s, t),
r2(x, s, t) = εg2(x, s, t)+ (16)

+

∞
∫

0

∞
∫

−∞

r(x+ y,
s+ t−1δ(x, t, y) + u

1 + ε/t
, t + ε)h(x, s, t, y, u)dydu,

if t0 ≤ t ≤ 1− ε. Here

g1(x, s, t) =

∫∫

ΘN

α+β−3/2f̃tβ(x|tα)ψ̃kM−1(kMs/β)̺(α, β)dαdβ,

g2(x, s, t) =

∫∫

ΘN

α−β−3/2f̃tβ(x|tα)ψ̃kM−1(kMs/β)̺(α, β)dαdβ,
(17)

h(x, s, t, y, u) =
c(k,M)

s3/2
× s(kM)/2u(M−3)/2

(s+ t−1δ(x, t, y) + u)((k+1)M−3)/2
, (18)

with c(k,M) =

(

1

2MMπt

)1/2

× 1

Γ
(

M−1
2

) ×
(

t+ ε

t

)
kM−4

2
(

(k + 1)M

e

)
M

2

and

t−1δ(x, t, y) =
(εx− ty)2
Mt2(t+ ε)

, (19)

When processing the (k+1)th batch (respective to (t+ε) point of time) the Bayesian strategy
prescribes choosing an action corresponding to a smaller value r1(x, s, t), r2(x, s, t); in the
case of a draw, the choice can be arbitrary. Once the first action has been chosen, it will
be applied until the end of the control. Bayesian risk (1) is

RN (λ) = (DN)1/2



t0

∫∫

Θ

α−̺(α, β)dαdβ + h0

∞
∫

0

∞
∫

−∞

r(x, s, t0)dxds



 (20)

with h0 =
2

t
1/2
0 (k0M)

× 1

Γ(k0M−1
2

)
×
(

k0M

2e

)

k0M
2

.

Proof. The proof is similar to the proof of theorem 2 in [1] and is obtained after performing
the above change of variables in (10)–(14).

2
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Remark. Like in [1], we can assume that the data in batches themselves are the
small packets of M1 pieces. Thus, the total number of such pieces is N × M1, their
mathematical expectation and variance are m/M1 and D/M1 respectively. Therefore,
the following relations are valid: m/M1 = α((D/M1)/(N × M1))

1/2, D/M1 = βD/M1

and (DN)1/2 = ((D/M1)(N ×M1))
1/2. Hence, (15)–(20) will not change for this control

problem. Therefore, description of control in theorem 2 is invariant in the sense that it
depends only on the number of batches K and their sizes M even if the data in batches
are themselves the packets of M1 pieces.

2. Limiting Description. Differential Equation

In order to present the limiting description of (15)–(20), we need the following auxiliary
results. Note that lemma 1 and lemma 2 are proved in [7].

Lemma 1. The asymptotic (as κ→∞) estimate is valid

I1(κ) =

∞
∫

−∞

dz

(1 + z2)κ
=
(π

κ

)1/2
(

1 +
3

8κ
+ o(κ−1)

)

. (21)

Lemma 2. For κ ≥ 2 the equality holds

ID1 (κ) =

∞
∫

−∞

z2dz

(1 + z2)κ
=

I1(κ)

2κ− 3
. (22)

Lemma 3. For a factor h0 in (20) with k0 = t0K, t0 > 0, the asymptotic (as K → ∞)
estimate is valid

h0 = (2πt0)
−1/2 (1 + o(1)). (23)

Proof. We use the Stirling’s formula Γ(κ + 1) ∼ (2π)1/2κκ+1/2e−κ. Then

h0 ∼
1

(2πt0)1/2
×
(

k0M

k0M − 3

)

k0M
2
(

k0M − 3

k0M

)

× e− 3
2 =

1

(2πt0)1/2
(1 + o(1))

as k0 →∞.

2

Lemma 4. Let the density ̺(α, β) be a continuous function of α, β. If t ≥ t0 > 0 then
the limiting (as K →∞) formulas are valid

g1(x, s, t) = I (s, (β0, 1))×
c
∫

−c

α+s−1/2f̃ts(x|tα)̺(α, s)dα,

g2(x, s, t) = I (s, (β0, 1))×
c
∫

−c

α−s−1/2f̃ts(x|tα)̺(α, s)dα,
(24)

where the indicator I (s, (β0, 1)) = 1 if s ∈ (β0, 1) and I (s, (β0, 1)) = 0 if s /∈ [β0, 1].
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Proof. Consider ψ̃kM−1 (kMs/β) from (17). Using (5), like in [7], lemma 4, one can

obtain that β−1ψ̃kM−1(kMs/β) = (kM/(4πβ2))
1/2

exp (−kM(s − β)2/(4β2)) (1 + o(1)).
This function converges to the Dirac delta function δD(s − β) as ε → 0. Hence, for any

continuous function g(β) the equalities hold:
1
∫

β0

g(β)δD(s− β)dβ = g(s) if s ∈ (β0, 1) and

1
∫

β0

g(β)δD(s− β)dβ = 0 if s /∈ [β0, 1]. Taking into account (17), we obtain (24).

2

Lemma 5. Given s′ > 0, the equalities hold

I2(a, b) =

∞
∫

0

uas′b

(s′ + u)a+b
du = s′B(a+ 1, b− 1), (25)

I ′2(a, b) =

∞
∫

0

ua+1s′b

(s′ + u)a+b
du = s′I2(a + 1, b− 1) = s′

a + 1

b− 2
I2(a, b), (26)

where B(a, b) is the Beta-function.

Proof. To prove (25), let’s make the change of variables x = u/(s′ + u), then 1 − x =

s′/(s′+u), du = s′(1−x)−2dx and, hence, I1(a, b) = s′
1
∫

0

xa(1−x)b−2dx = s′B(a+1, b−1).

To prove (26), one should use the formulas B(a, b) = Γ(a)Γ(b)/Γ(a+ b), Γ(a+1) = aΓ(a).

2

Lemma 6. For c(k,M) from (18), the asymptotic (as k →∞) estimate holds

c(k,M)B

(

M − 1

2
,
kM − 2

2

)

=
1

(2πε)1/2

(

1− 7

4kM
+ o(k−1)

)

. (27)

Proof. Using the Stirling’s formula, we obtain

B(a + 1, b− 1) =
Γ(a + 1)Γ(b− 1)

Γ(a + b)
∼ Γ(a+ 1)

(

1

1 + a+1
b−2

)a+b− 1
2 (

e

b− 2

)a+1

.

Then for a = (M − 3)/2, b = kM/2 we have

c(k,M)B(a + 1, b− 1) ∼
(

1

2πeε

)1/2
(

1− 4
kM

1 + M−5
kM

)
(k+1)M−4

2

×
(

1− 4

kM

)1/2

×
(

1 +
1

k

)
kM−4

2
(

1 + 1
k

1− 4
kM

)

M

2

.

From here, (27) follows.

2
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Lemma 7. The asymptotic (as k →∞) estimate holds

I3(k,M) =

∞
∫

−∞

(

s

s+ t−1δ(x, t, y)

)
kM−2

2

dy = (2πεs)1/2
(

1 +
2M + 7

4kM
+ o(k−1)

)

. (28)

Proof. Let’s make the change of variables in I3(k,M): sz2 = t−1δ(x, t, y), then εx− ty =
−tz(Ms(t + ε))1/2, dy = (Ms(t + ε))1/2dz. Using (21), we have

I3(k,M) = (Ms(t + ε))1/2I1

(

kM − 2

2

)

= (2πεs)1/2
(

kM +M

kM − 2

)1/2(

1 +
3

4(kM − 2)

)

.

From here, (28) follows.

2

Lemma 8. The asymptotic (as k →∞) estimates hold

I41(k,M) =

∞
∫

−∞

∞
∫

0

h(x, s, t, y, u)dudy = (1 + 1/(2k) + o(k−1)), (29)

I42(k,M) =

∞
∫

−∞

∞
∫

0

u× h(x, s, t, y, u)dudy = s
M − 1

kM
(1 + o(1)), (30)

I43(k,M) =

∞
∫

−∞

∞
∫

0

z2 × h(x, s, t, y, u)dudy = 1

kM
(1 + o(1)), (31)

∞
∫

−∞

∞
∫

0

ui × h(x, s, t, y, u)dudy = o(k−1), i = 2, 3, . . . (32)

∞
∫

−∞

∞
∫

0

z2i+1 × h(x, s, t, y, u)dudy = 0, i = 0, 1, . . . (33)

∞
∫

−∞

∞
∫

0

z2i × h(x, s, t, y, u)dudy = o(k−1), i = 2, 3, . . . (34)

Here z is defined in lemma 7 by condition sz2 = t−1δ(x, t, y).

Proof. Let’s prove (29). Denote s′ = s+ t−1δ(x, t, y). Then, using (27), (28),

I41(k,M) =
c(k,M)skM/2

s3/2

∞
∫

−∞

1

(s′)kM/2





∞
∫

0

(s′)kM/2u(M−3)/2

(s′ + u)((k+1)M−3)/2
du



 dy =

=
c(k,M)

s1/2
B

(

M − 1

2
,
kM − 2

2

)

∞
∫

−∞

(

s

s+ t−1δ(x, t, y)

)(kM−2)/2

dy =

= (1 + 1/(2k) + o(k−1)).

2025, vol. 12, no. 1 19



A. V. Kolnogorov

Similarly, as I1((kM − 4)/2) ∼ I1((kM − 2)/2), we have for (30)

I42(k,M) =
c(k,M)s(kM−2)/2

s1/2

∞
∫

−∞

1

(s′)(kM−2)/2





∞
∫

0

(s′)(kM−2)/2u(M−1)/2

(s′ + u)((k+1)M−3)/2
du



 dy =

= s1/2c(k,M)B

(

M + 1

2
,
kM − 4

2

)

I1((kM − 4)/2) = s
M − 1

kM − 4
(1 + o(1)).

For (31) we have

I43(k,M) =
c(k,M)skM/2

s3/2

∞
∫

−∞

z2

(s′)kM/2





∞
∫

0

(s′)kM/2u(M−3)/2

(s′ + u)((k+1)M−3)/2
du



 dy =

=
c(k,M)

s1/2
B

(

M − 1

2
,
kM − 2

2

)

ID1 ((kM − 2)/2) =
1

kM − 5
(1 + o(1)).

Formulas (32)–(34) are checked in a similar way.

2

Let’s obtain a limiting description of recursive equation (15)–(16) as ε→ 0. Let s be
defined in lemma 7 by condition sz2 = t−1δ(x, t, y), so that εx−ty = −tz(Ms(t+ε))1/2 y =
εx/t+z(Ms(t+ε))1/2. Let’s assume that r(x, s, t+ε) has partial derivatives of the required
orders by x, s and denote them by r, r′x, r

′′
xx, r

′
s. Presenting r(x + y, (s(1 + z2) + u)) /(1 +

εt−1), t+ ε) as a Taylor’s series, we obtain

r + r′x × εx/t+ 0.5r′′xx × z2(Ms(t + ε)) + r′s × (−sε/t+ (sz2 + u)) + A(ε, z, u). (35)

Here r′x, r
′′
xx, r

′
s are calculated at the point (x, s, t + ε) and A(ε, z, u) contains the terms

which are o(ε) after integration according to lemma 8. Substituting (35) into the integral
in the second equation (16), taking into account (29)–(34) and equality k−1 = ε/t we
obtain that second equation (16) turns to

r2(·, t) = r(·, t+ ε)× (1 + ε/(2t)) + εr′x(·, t+ ε)× (x/t) + 0.5εr′′xx(·, t+ ε) + o(ε). (36)

Let’s obtain the differential equation. To this end, we write (15) in equivalent form
min(r1(·, t)− r(·, t), ε−1 (r2(·, t)− r(·, t))) = 0, where r1(·, t) and r2(·, t) are taken from the
first equation (16) and (36) respectively. In the limit as ε→ 0, we get the equation

min ((1− t)g1 − r, r′t + r/(2t) + r′x × (x/t) + 0.5sr′′xx + g2) = 0, (37)

with initial condition r(x, s, 1) = 0. Here g1, g2, r, r
′
t, r

′
x, r

′′
xx are functions of x, s, t. Bayesian

strategy prescribes to choose the action corresponding to the smaller term on the left hand
side of (37); in the case of a draw the choice can be arbitrary. Once the first action is chosen,
it will be applied until the end of the control. Here g1, g2 are given by (24) and the Bayesian
risk (1) asymptotically is equal to

lim
K→∞

(DN)−1/2RN (λ) = t0

∫∫

ΘN

α−̺(α, β)dαdβ +
1

(2πt0)1/2

1
∫

β0

∞
∫

−∞

r(x, s, t0)dxds.
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Conclusion

We have considered the limiting description of the batch data processing with an
estimation of the variance of the distribution of one-step incomes by incomes within
batches. This description is given by the same second-order partial differential equation
as if the variance estimation is performed based on cumulative incomes in batches.

The research was supported by Russian Science Foundation, project number 23-21-
00447, https://rscf.ru/en/project/23-21-00447/.
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ПРЕДЕЛЬНОЕ ОПИСАНИЕ УПРАВЛЕНИЯ В ЗАДАЧЕ

О ГАУССОВСКОМ ОДНОРУКОМ БАНДИТЕ

А. В. Колногоров, Новгородский государственный университет

им. Ярослава Мудрого, г. Великий Новгород, Российская Федерация

Рассматривается предельное описание управления в задаче о гауссовском однору-

ком бандите в приложении к пакетной обработке больших данных, если оценки неиз-

вестных математического ожидания и дисперсии одношаговых доходов выполняются в

процессе обработки данных внутри пакетов. Это описание дается дифференциальным

уравнением в частных производных второго порядка, в котором оценка неизвестной

дисперсии присутствует как постоянный параметр. Данный результат означает, что

при обработке больших данных сколь угодно точная оценка неизвестной дисперсии

может быть получена на относительно сколь угодно коротком начальном этапе, а за-

тем использована для управления.

Ключевые слова: гауссовский однорукий бандит; пакетная обработка; байесов-

ский подход; инвариантное описание.
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