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The article considers a linear equation of the Sobolev type with a relatively sectoral
operator. This type of equation arises when modeling various processes: the evolution
of the free surface of a liquid, the flow of a viscous incompressible liquid, plane-parallel
thermoconvection of a viscoelastic incompressible liquid, etc. The paper considers the
following stabilization problem: it is necessary to find a control action on the equation
so that it becomes uniformly asymptotically stable. The solution to this problem is based
on the theory of semigroups and groups of operators with kernels. In the case when the
relative spectrum consists of two parts, one of which lies in the left half-plane of the
complex plane, and the second in the right half-plane of the complex plane, it is possible to
construct a resolving semigroup and a group of operators, and to carry out their exponential
estimates. In this case, the solution of the equation can be represented as the sum of a stable
and unstable solutions. The stabilization of an unstable solution is based on the feedback
principle. An equation describing the evolution of the free surface of a liquid is considered
as an application.
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Introduction

Let us consider a linear Sobolev-type equation
Li = Mu. (1)

Here, the operators L, M are linear and continuous operators acting from the Banach
space U to the Banach space §, the kernel of the operator L is nontrivial, and the operator
M is a relatively sectorial operator. Equations of type (1) arise in modeling various physical
processes.

Studies of equations unsolved with respect to the time derivative appeared in the works
of A. Poincare. However, the systematic study of such equations began with the works of
S.A. Sobolev. At present, the theory of Sobolev-type equations is actively developing, and
various directions have been formed (see, for example, [1-4|). This study is based on the
theory of operator semigroups with kernels. Papers [5-7] have been devoted to the study
of the solvability of the Cauchy problem for equation (1) with respect to the sectorial
operator. In [8], the stability of solutions of the equation (1) in terms of invariant spaces
and dichotomies of solutions was studied for the first time. In [9], the method of Lyapunov
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functions was applied to study the stability of solutions. In [10], the solvability of a linear
stochastic equation of Sobolev type is studied; in [11], stability results are obtained and
numerical experiments are carried out.

The aim of the paper is to develop a general method for stabilizing solutions of the
equation (1). The paper consists of two parts. The first part contains known results on the
theory of semigroups and groups of operators with kernels and the phase space of a linear
Sobolev equation. In the second part, following [8], we consider exponential estimates of
semigroups and operator groups in the case when the relative spectrum does not intersect
the imaginary axis, we solve the problem of stabilization of unstable solutions from the
feedback principle. As an application, the Dzekzer equation is considered.

1. Resolvent Semigroups

Let ¢ and § be Banach spaces, operators L, M € L(4;F). The set pl(M) =
{npeC:(uL — M)t € L(F;)} is the L-resolvent set, the set o%(M) = C\ p*(M) is
the L-spectrum of the operator M. Let u, € p*(M), ¢ = 0,1, ..., p. The operator-functions
Ri(M) = (uL — M)™'L and L};(M) = L(uL — M)~" are called respectively right L-

p
resolvent and left L-resolvent of the operator M, and R(l;,a,p)(M> = [T(p,L — M)™'L

q=0

and LY

(sp

p
(M) =TI L(peL — M)=' — right (L, p)-resolvent and left (L, p)-resolvent of
q=0

the operator M. The operator is called (L, p)-sectorial if for some real number a, some
K € R, and some O € (7/2,7) sector SL.O(M) = {u € C: |arg(pp — a)| < O, # a} lies
in the relatively resolvent set of the operator M and

K
max {HR(LHJ))(M)HE(M)a ||L(Lu,p)(M)||2(il)} < m
p

for all yu, € SLg(M), ¢=0,1,...,p.

Definition 1. Mapping V* € C(R4; L(U) (V* € C(R;Y)) is called a semigroup (group)
in the Banach space G, if

VEVE =Vt vs t e R, (Vs,t €R). (%)

A semigroup {V*' : t € R,} is called holomorphic, if it is analytic in some sector
containing the ray R, , and the condition (*) is satisfied. A group is called holomorphic,
if it is analytic in the entire complex plane C and the condition (*) holds. A semigroup
(group) is called wuniformly bounded, if |[V*||y < const on any compact subset of R, (R).
The set ker V* = {v € U : Vlo =03t € R, } is called the kernel, and the set imV*® = {v €
U : v =V%} is image of the analytic group {V*: ¢ € R, }. Let 4! (F') denote the closure

of imR(, (M) (imL{, , (M)) in the norm of the space i (§).

Theorem 1. [7| Let the operator M be (L, p)-sectorial. Then there exists a holomorphic
and uniformly bounded semigroup of operators

1 1
U'= 5 | RiM)du (F'= o / LE(M)edp), (2)
I I
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where the contour T' C pY(M) is such that |argu| — © for p — oo, p €T, t € R,.

Let the operator M be (L, p)-sectorial and the following conditions hold:
U=wod, =573, (A1)

there exists an operator
Lt e L(F;4). (A2)

consider the linear equation (1). A vector-function u € C*°(R;4) is called a solution of
the equation (1) if it satisfies this equation.

The set P C U is called the phase space of the equation (1) if the solution of the
equation (1) u(t) € B for all t € Ry, and for any uy € P there exists a unique solution to
the problem

tl_l)I(%_ u(t) = (3)

for the equation (1).

Theorem 2. |[7| Let the operator M be (L, p)-sectorial, and the conditions A1 and A2
hold. Then:

(i) there exists a resolvent semigroup for the equation (1) of the form (2);

(ii) for any ug € U, the unique solution to the problem (1), (3) is given by u(t) = Utuy.

2. Exponential Estimates and the Stabilization Problem

Let the operator M be (L, p)-sectorial, and the conditions A1l and A2 hold. Denote by
U0 = e and Ly, (My) the restriction of the operator L (M) to 4U°, and let the operator
H = My'Ly. Let o*(M)iR = 0 and o2(M) = {u € o“(M) : Reu > 0}, ok (M) # 0.
Then ¢Z(M) is a bounded set, and let ', be the contour that encloses o2 (M) and lies to
the right of the imaginary axis. The part of the spectrum oZ(M) = o*(M) \ oZ(M) lies
in a sector bounded by the contour

I''={ueC:Reu<0, |argu| € (7/2,7)}.

1
The operator P, = Py Rﬁ(]\/[)d,u € L(Y) is a projector. Denote by J% = imP,,
i
Iy

7% = U o 3% and let M, (Ls) and M, (L,) denote the restrictions of M (L) to J*
and J%, respectively. Furthermore, the operator M is relatively bounded, while M, is a
relatively sectorial operator.

We will consider the equation (1) in the form of a reduced system:

Hu' =, (4)
Lyi® = Mu?, (5)
L,u® = M. (6)

The solution u = u(t) of the equation (1) u = u®+u® +u*, where u® = u°(¢) is the solution
to equation (4), u® = u®(¢) is the solution to equation (5), u* = u"(t) is the solution to
equation (6).
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Definition 2. The equation (1) will be called uniformly exponentially stable if there exist
constants N > 0 and vy > 0, such that for allt € Ry and any uy € B the solution u = u(t)
of the problem (1), (3) satisfies the exponential estimate:

lu(t)lly < Ne™[Jugly. (7)

Let us solve the following stabilization problem. It is required to find such a control
action on equation (1), that it becomes uniformly exponentially stable. If the operator M
is (L, p)-sectorial, then the solution u® = u%(¢) of equation (4) equals zero for any ¢ € R,
There exists a decaying semigroup for equation (5)

1
Ul = (uLs — M)t Lee"dp

2me
Iy

and a resolving group for equation (6)

1

21
Iy

Ul =

r

(uLy — M) ' LyeMdp.

Due to the closure of the spectrum, there exist constants v, 8 > 0, such that Re o2 (M) > 8
u Re 0Z(M) < —a. Then

1U | oy < Ce™, Ul oy < Ce™, t € R, (8)

Based on the estimates (8) it is clear that equation (5) is uniformly exponentially stable,
whereas equation (6) is not uniformly exponentially stable.
So, the stabilization problem reduces to finding a vector function f , such that for the
solution of the equation
L% = Mu" + f. 9)

the following condition holds:

lu ()]l < Nue™™

ug - (10)
We will find f through feedback: f = Cu", where C' is a known linear bounded

operator. Equation (9) then takes the form
L,a"* = Myu, + Cuy, = (M, + C)uy,. (11)

Let m = max i € o(M,). Let’s put the operator C' = — (e +m)I, where £ > 0 is arbitrarily
e n
small. Then the relative spectrum of the operator M, + C' lies in the left half-plane of the

complex plane, and for the solution of equation (11) condition (10) holds.
Let is consider the application of the obtained results to the Dzekzer equation:

(A — Ay = alu — BA?u. (12)

where the parameters a, § € R, and A € R. Let 2 € R" be a bounded region, and its
boundary 92 € C'*°. Define the spaces 4 and §:

U={ue W) ulx)=0, (z) €00}, = La(Q).
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Let {¢} be the eigenfunctions of the Laplace operator A orthonormalized relative
scalar product in 4, the spectrum o(A) = {vy}. In [7], it is shown that the operator M is

strongly (L, 0)-sectorial, and for a;, 3, A € R\ <0, % , there exists a solution n = n(t) to
the Cauchy problem (1) for the equation (3) of the form:

aul—ﬂuf

u(t) = Z/e < w00 > 1.
=1

Let a, >0 and A < vq. Then,

aL(M):{w:/\<yk}.

/\—l/k

for A < v;. For the stabilization problem, we take B = —(¢ + (o — v,8)1,)], where n is
the index of the maximum value py, € cZ(M), ¢ > 0. Then the solution to the stabilized
equation (12) is given by:

O“’kfﬁl’}%t owkfﬁuzf(&%ownfﬁu%)
u(t) = E e A < ug, o > o) + E e =k < ug, Pr > Pr.

A>vy A<y,

Conclusion.

In the future, it is planned to develop a general approach to solving the problem of
stabilizing solutions of semilinear Sobolev type equations with a relatively sectoral operator
[12]. Following the work of [13-15], computational experiments are planned to find stable
and unstable solutions and solve the stabilization problem.

This work was supported by the Russian Science Foundation under grant no. 25-21-
20017.
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CTABUJIN3AILINA PEIIIEHNN JINMHEMHOI'O YPABHEHIS
COBOJIEBCKOI'O TUITA C OTHOCUTEJIBHO
CEKTOPUAJIBHBIM OIIEPATOPOM

O. I Kumaesa', E. JI. Axmadees’
Oxm0- Y pasbeKkuii rocy1apeTBeHHbIH YHNBEPCUTET, T. JeIa0mHCK,
Poccniickas @enepariust

B crarbe paccmarpuBaercs JMHEHHOE ypaBHEHHE CODOJIEBCKOIO THIIA ¢ OTHOCHUTE/Ib-
HO CEKTOpUAJIbHBIM OIepaTopoM. Takoro Bua ypaBHEHUsI BOSHHUKAIOT IIPU MOJEJIMPOBa-
HUU PA3JIMYHBIX IIPOIECCOB: 9BOJIIOIUU CBOOOIHON MOBEPXHOCTH YKUJIKOCTH, TEYEHUS BSI3KOM
HECIKUMAEMOM YKUIKOCTH, IIJIOCKOIAPAJIIETbHAS TEPMOKOHBEKITUST BA3KOYIPYTON HECKIMar-
eMoit KUJIKOCTU 1 T.II. B paboTe paccMaTpuBaeTCs CIeLyIONas 3a/1a49a CTAOMIN3aIIAN: TPe-
Oyercsi HAWTH YIpaBJISONIee BO3JEHCTBAE Ha ypaBHEHWE, YTOObI OHO CTAJI0 PABHOMEDHO
ACHMIITOTUYIECKH YCTONYIUBBIM. Pertenne naHHOil 3a1a4n Da3upyeTcs Ha TeOPUH OJIy I'PYIIIL
U TPYIII OIIepaTOPOB C siApaMu. B ciiydae, KOrJa OTHOCUTE/BHBIN CIIEKTP COCTOUT U3 JABYX
JacTeil, OJIHa U3 KOTOPBIX JIEYKUT B JIEBOH MOJIYILIOCKOCTH KOMILIEKCHO MIJIOCKOCTH, & BTO-
pasi B IIPaBOil MOJIYILUIOCKOCTH KOMIIJIEKCHON TIOCKOCTH, TO MOYKHO HOCTPOUTH Pa3peIao-
I[¥Ie TOJIyTPYIILy U TPYIILY OIEePATOPOB, IMPOBECTH WX IKCIIOHEHIIHAJBHBIE OIEHKU. B 3ToM
cJlydae peIlleHre YpPaBHEHUsI MOXKHO IIPEJICTABUTH B BHJE CYMMBI YCTONYIUBOTO U HEYCTOIi-
quBoro pemrenusi. Crabuimsaliys HeyCTONINBOIO PeIlieHrsl TPOBOINTCsI Ha OCHOBE IIPUHIIN-
a obpaTHOl cBs3u. B KadecTBe MPUIIOKEHUsT PACCMATPUBAETCSI Y PABHEHME, OTIMCHIBAIOIIEE
9BOJIIOIUIO CBODOIHOM TIOBEPXHOCTH YKUJIKOCTH.

Karouesvie crosa: ypashenus coboae8cK020 MUnNa; UHEAPUGHMMHBLE NPOCTPAHCMEA; 30~
daua cmabuAU3AUUL.
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