COMPUTATIONAL MATHEMATICS

MSC 35Q99 DOI: 10.14529/jcem250103

ALGORITHM FOR NUMERICAL STUDY OF DEGENERATE
MODELS OF NONLINEAR DIFFUSION AND FILTRATION
WITH A RANDOM INITIAL STATE

N. A. Manakova', manakovana@susu.ru,
N. G. Nikolaeva', nikolaevang@susu.ru
!South Ural State University, Chelyabinsk, Russian Federation

The article is devoted to the numerical study of one class of stochastic models of
nonlinear diffusion and filtration with a random initial condition of Showalter—Sidorov. The
nonlinear diffusion model describes the process of changing the concentration potential of
a viscoelastic fluid filtering in a porous medium; the nonlinear filtration model describes
the dependence of the pressure of a viscoelastic incompressible fluid filtering in a porous
formation on the external load. The models under consideration study within an abstract
semilinear equation of Sobolev type with p-coercive and s-monotone operator. An algorithm
for the numerical solution method of one class of problems of mathematical physics is
constructed. An example of applying the algorithm to the stochastic model of nonlinear
diffusion under study is given.
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Introduction

With the development of modern technologies, it has become possible to study and
construct numerical methods for solving initial-boundary value problems for degenerate
nonlinear equations and systems of partial differential equations. Obtaining an analytical
solution to the initial boundary value problem for nonlinear equations is not always
possible, which necessitates their numerical study. There are various approaches to the
numerical solution of such problems. In the case of degenerate semilinear equations,
the projection method has proven itself to be successful [1-3], as it allows one to take
into account the possibility of degeneracy of the equation. The projection method was
applied to the numerical study of a large class of degenerate deterministic [1-3] and
stochastic [4, 5] models (Sobolev-type models). On its basis, approximate solutions of
mathematical models are constructed, the coefficients of which satisfy a system of algebraic
differential equations with the corresponding initial conditions. The existence of solutions
to the initial value problem for a system of algebraic differential equations is proved using
the phase space method and the existence theorem for a solution for a singular system of
ordinary differential equations |6, 7].

The transition from the study of a deterministic model to a stochastic one is caused
by the fact that measurement errors may occur in experiments, which leads to the need to
consider a stochastic model. The study of stochastic partial differential equations became
possible with the development of the modern theory of stochastic processes. The traditional
approach to the study of stochastic models is the Ito—-Stratonovich—Skorokhod method.
This method allows one to move from differential equations to integral ones. At the
moment, the method has been extended to the infinite-dimensional situation [8|, and
also various applications to classical [9] and non-classical [10,11] models of mathematical
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physics are considered. Another approach, which has been widely used in recent years
for studying stochastic Sobolev-type equations, is based on considering the equation in
spaces of differentiable “noises” [12, 13|, was first proposed for the study of Leontief-type
stochastic systems [14].

Consider a complete probability space 2 = (2, A, P) and the set of real numbers R,
endowed with a o-algebra. A measurable mapping £ : €2 — R is called a random variable.
The set of random variables having zero expectations (i.e. E€ = 0) and finite variance
forms Hilbert space Lg (i.e. D < +00) with the inner product (&1,&) = E& &, where
E, D are the expectation and variance of the random variable, respectively. Let ® C R"
be a bounded domain with a boundary C'*°. Consider a H-valued differentiable stochastic
K-process 1, satistying stochastic models of nonlinear diffusion

A= A) 7 —div(|[VnP2Vn) =0, p>2, we Q, (s,t) €D x (0,7T), (1)
n(w,s,t) =0, weQ, (s,t) € 0D x [0,T], (2)

and nonlinear filtration
A=AN T —aAn+ P =0, p>2, weQ, (s,t) €D x (0,T), (3)
n(w, s, t) =0, weQ, (s,t) € 0D x [0,7T], (4)

and initial Showalter—Sidorov condition
(A= A)n(w,s,0) —no(w,s)) =0, we N, seD. (5)

Here 7 is Nelson-Gliklikh derivative of a stochastic process [15-17]. Mathematical model
(1), (2) with condition (5) describes the process of changing the concentration potential of
a viscoelastic fluid filtered in a porous medium [18,19|, with the assumption of a randomly
specified initial value 7y(w, s) of the fluid concentration potential. Mathematical model
(3), (4) describes the dependence of the pressure of a viscoelastic incompressible fluid (e.g.
oil) filtering in a porous formation [20] on the external load (e.g. the pressure of water
injected through wells into the formation). The parameter A € R and o € R characterize
the viscous and elastic properties of the liquid, respectively.

The models under consideration belong to the class of semilinear Sobolev-type models
[21], in which the nonlinear operator is p-coercive and s-monotone [22,23]:

L +Mn+ N(n) =0, ker L # {0}. (6)
The Showalter—Sidorov initial condition [24] in the general case will take the form
L(n(0) = no) = 0. (7)

0
To study model (1), (2) let’s consider functional spaces H = Lqo(D), $ =W (D),

0
B =W, (D), H =W,(D), B*=W,(D),p > 2 ]l) + é = 1. By ®B* and $* denote the

q
conjugate spaces to 8 and H relative to the scalar product < -,- > B H respectively. Due

to the choice of function spaces $) and B there exists a dense and continuous embedding

BosH>H—H — B, (8)
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which corresponds to the evolutionary case of embeddings and splitting of spaces for the
problem under study [21].

Denote the [ € N is order of the Nelson-Gliklikh [15, 16| derivative of the one-
dimensional stochastic process 1. Consider space of differentiable “noises” C'([0, T, Ly), i.e.
the space of stochastic processes from C([0,7T], L), which trajectories are almost surely
differentiable by Nelson—Gliklikh. Choose a monotonely decreasing numerical sequence

K = {1} such that > u? < 4o00. Specify the Nelson-Gliklikh derivative of the stochastic
k=1

K-process

where the family of functions {¢x} forms a basis in the space H, and series converges
uniformly in the norm H gLy on any compact set [17]. The space of differentiable K-“noises”
CY([0, T); HixLs) of continuous H-valued stochastic K-process, which trajectories are
almost surely continuously differentiable by Nelson—Gliklikh. Similar to the construction of
space C'([0, T]; HxLsz), let’s construct spaces of differentiable K-“noises” C'([0, T]; B xLy)
and C'([0,T]; $HxLs) [25] and define the operators:

(Ln.¢) =B / (NIC+ V- VO)ds, 1, ¢ € HLa: (9)
D
(N().¢) = E / VPV - VCds, 1, ¢ € Byl (10)
D

Thus, model (1), (2) can be studied as part of the study of equation (6). To study model

0

(3), (4) let’s consider functional spaces H = Lyo(D), H =W 3(D), B = L,(D), where
n=22<p<4ooorn>32<p<2+ ﬁ. Due to the choice of function spaces $) u
B there exists a dense and continuous embedding

H B H s B — H, (11)

which corresponds to dynamic case of embeddings and splitting of spaces for the problem
under study [21]. Let’s construct operators for the nonlinear filtration model:

(Ln.¢) = E / (MIC+ V- VO)ds, 1, ¢ € HxLa: (12)
D
(M(n),¢) = E / V- Veds, 1, ¢ € HxLa; (13)
3]
(N(n),¢) = E / nPncds, . ¢ € BiLa. (14)
3]

Problems (1),(2) and (3),(4) relate to different cases of space embeddings, but the
properties of the operators are preserved. The operator L is linear, continuous, self-
adjoint, non-negative definite at A > —\; and Fredholm in both cases. The operator
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N is smooth, s-monotone and p-coercive, the operator M is linear, continuous and 2-
coercive [23]. Here {\z}, {1x} are the sequences of eigenfunctions and eigenvalues of the
homogeneous Dirichlet problem for the Laplace operator (—A) in the domain ®, numbered
in non-decreasing order taking into account the multiplicity. Note that the orthonormal
family of functions {¢} is total in space H. In the future, instead of a family {¢;} will
take a family {iy}.

Investigation of problems (1), (2), (5) and (3) — (5) is based on the developed research
method for an abstract stochastic equation (6) with s-monotone and p-coercive operator
[25]. Let’s consider stochastic K-processes n = n(t) and ¢ = ((t) them equal if almost
certainly each trajectory of one of the processes coincides with the trajectory of another
process.

Definition 1. A stochastic K-process n is called a solution to equation (6), if almost
surely all trajectories of n satisfy equation (6) for all t € (0,T). A solution n = n(t) to
equation (6) is called a solution to Showalter—Sidorov problem (6), (7), if the solution
satisfies condition (7) for some random K -variable 1.

Define 1y € $HLy in form
o = Z HkTok ks
k=1

where {nox} C L2 is a sequence of random variables.

Theorem 1. [26] Let the operator L € L($HxLo;H5La) is self-adjoint, non-negative
definite at X\ > —\; and Fredholm, the operator M € L($xLo; $5-Lo) is 2-coercive, the
operator N € C®(B g Ly; B4 Ls) is s-monotone and p-coercive and the embedding of spaces
is performed (8). Then for any sequence of random variables {no.} C Lo, for any T € R,
there exists a solution n € C*([0,T]; HxLy) to problem (6), (7).

Define 7y € B Ly in form
no = Z HkTok ks
k=1

where {7y} C Lo is a sequence of random variables.

Theorem 2. [}/ Let the conditions of Theorem 1 be satisfied and the embedding of spaces
be valid (11). Then for any sequence of random variables{no,} C La, for any T € R there
exists a solution n € CF([0,T]; BxLy) to problem (6), (7).

Thus, based on the abstract theory, we can conclude that there is a trajectory solution
to Showalter—Sidorov problem (6), (7) n € C*([0,T]; BxLy) u n € CH([0,T]; HxLs) to
problems (1), (2), (5) and (3), (4), (5) respectively.

1. Algorithm for a Numerical Method

Based on the modified projection method, we will construct an algorithm for the
numerical solution of Showalter—Sidorov problem (7) for stochastic equation (6), which
allows us to find approximate solutions for given initial values and model parameters.

0 Stage. Finding the sequences of eigenfunctions {A;} and eigenvalues {tx} of the
homogeneous Dirichlet problem for the operator L.
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1 Stage. Choose a monotonically decreasing numerical sequence K = {p} such that
> pui < +oo, and the initial random variable in the form 7y = Zukﬁokwk whose
k=1 k=1

coefficients {no} are independent Gaussian random variables such that their variances
are bounded (Dny, < C, k € N).
2 Stage. Representation of the required functions in the form of a Galerkin sum

N
NN = Zﬂkﬁkwk,
=1

where 1, = ng(w, t), Y = Yr(s), and substitution in(6):

Ly +Mny + N(ny) = 0. (15)

3 Stage. Scalarly multiplying the equation (15) by the eigenfunctions ¢y(s), k =
1,..., N, we form a system of algebraic differential equations

E<L%N7wk> + E<M77N7wk> + E<N(77N)7wk> = 07 k= 17 7N (16>

4 Stage. Generating a sequence of random variables {no} C Ly and the composition
of a random variable 7.

5 Stage. Construction of the Showalter—Sidorov initial conditions for a system of
algebraic differential equations (16)

E<L (UN(S‘,O) - 7]0(5)) 7¢kz(5)> =0, k=1,...,N. (17>

6 Stage. We find the solution of the system of algebraic-differential equations (16) with
initial conditions (17) by the Runge-Kutta method of 4-5 orders.

7 Stage. Plotting a trajectory of an approximate solution ny(s,t) to problem (6), (7).

8 Stage. For a statistical study of the solution to problem (6), (7) we repeat stages
4 through 7 m times with the generation of various {5}, } to construct trajectories of an
approximate solution 7}, 1 = 2, ..., m of problem (6), (7).

9 Stage. Finding the sample mean, sample average variance and standard deviation
from the constructed sample nly,l =1, ..., m.

10 Stage. Evaluation of the obtained trajectories with a given probability p = 0.997
according to the 3o rule.

Let us present the algorithm of the program implementing the developed numerical
method using the example of studying the model of nonlinear diffusion with a random
initial state (1), (2) on the segment. Let us describe its operation step by step and present
the results of the computational experiment.

Step 1. We introduce the coefficients of nonlinear diffusion equation A = —1, p = 4,
length of the segment [ = 7, the number of Galerkin approximations N = 5, the parameter
T =1 of the time interval [0, 7], the parameters of the random influences — mathematical
expectation and standard deviation, equal to 2. Choose a monotonely decreasing numerical

1
sequence {K} = {E} ,k € N. Thus, problem (1), (2), (5) will take the form

N4 Ny +3(1:) e = 0, s € (0,7), t € (0,1], (18)
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n(0,t) = n(m,t) =0, t €[0,1], (19)

with the Showalter—Sidorov initial condition

n(s, O) - 770(5) — Nss (5, O) + Noss(s) =0, s € [07 7T]‘ (2())

The generation of random variables included in the decomposition for the initial
function 79(s) using the function stats[random, normald[u,0]](1). The generation of
random variables gave the following results:

1o = 0.648161051674+/2sin(s) + 1.262983605797v/2 sin(2s) — 1.353800851640v/2 sin(3s)-+

+1.390132285285+/2 sin(4s) — 0.300173601945v/2 sin(55).

Step 2. A separate procedure finding the sequences of eigenfunctions and eigenvalues
of the homogeneous Dirichlet problem for the operator (—A):

2
Yi(s) = \/jsin(ks), M=K, k=12 ...
m

Step 3. Using the for k to 1 do N end do loop, we form an approximate solution
in the form of a Galerkin sum and substitute it into the (18) equation:

= %Uk(t)\/gsm(ks)'

k=1

Step 4. A separate procedure, in the for k to 1 do N end do loop, forms a system
of differential equations and a system of algebraic equations.

Step 5. The first equation of the system, which is algebraic, is solved at the initial
time and 7, (0) is found:

—3(n5y + 3n61m03 + SM01762 + 16701) Noanoa+
+18n01mps + 30M01703705 + 32001M54 + 50M01755 + 1205m03+
201m05M05 + 48702703M04 + 80702704705 + 45153105 = O,

71 (0) = 1.957738287440.

Step 6. A system consisting of algebraic and differential equations is solved, taking
into account the initial function and the result obtained in step 5 79;.The solution is
found using the built-in procedure dsolve. As a result of the sixth step of the algorithm,
we obtain a system of algebraic-differential equations of the form (16), which contains
four differential equations and one algebraic equation — the first with Showalter—Sidorov
conditions

172(0) = 2.238580155726, 13(0) = —2.399549532848,

n4(0) = 2.463945322320, 75(0) = —0.532043856707.

Step 7. Functions for solving the problem are formed at times from 0 to 71" with a
step frequency of 0,017".
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Fig. 2. Expectation E(n(s,0,5)) and Fig. 3. Expectation E(n}(s,1)) and its
its estimate estimate
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Step 8. Using the plot, plot3d (Fig. 1) built-in procedures, 2D and 3D plots of the
functions obtained in step 7 are displayed.

The study of a stochastic model involves m computational experiments, each of which
uses a generator of a random normally distributed variable 7, with given parameters
of mathematical expectation and variance for modeling. After the generation of random
variables, the first three stages of the numerical solution of the Showalter—Sidorov—Dirichlet
problem for the stochastic model. For subsequent processing of the results, a loop is run
on 7, which allows processing the results of m experiments in one program. Each cycle will
allow you to get several implementations of the solution.

Step 9. For statistical study of the solution of problem (18) — (20) we repeat stages 5
through 7 m = 10 times with the generation of various {n},} to construct trajectories of
an approximate solution n,l = 2, ..., m.

Step 10. Finding the sample mean, sample mean variance and standard deviation for
the constructed sample. Evaluation of the obtained trajectories with a given probability
p = 0,997 according to the rule 30. As a result of the experiment with probability 0,997
we can use the estimate

In(s, t) = By (s, )] < 30y(t). (21)

In Fig. 2 several function graphs are combined. Solid lines show the graphs of functions
n\(s,0,5),i=1,...,10, functions are represented by dotted lines E(n’ (s, 0, 5))+30,(0, 5)
and E(nl(s,0,5)) — 30,(0,5), obtained numerically. In Fig. 3 shows the graphs of
the functions 7l (s,1), i = 1,...,10, E(ni(s,1)) + 30,(1) and E(n(s,1)) — 30,(1).
Graphs 1l (s,1), i = 1,...,10 are shown by dotted lines, solid lines represent functions
E(ni(s,1)) + 30,(1) and E(n’y(s,1)) — 30,(1), obtained numerically, the estimate (21) is
satisfied.

This work was funded by Russian Science Foundation — 24-11-20037,
https:/ /rscf.ru/project/24-11-20037/.
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AJITOPUTM YNCJIEHHOTI'O NCCJIEIOBAHUNA
BBIPOXKJEHHLIX MOJEJIEN HEJIMHENHBIX
AN®OY3INN 1 PUJIBTPAITIN CO CJIYYAMHBIM
HAYAJIbHBIM COCTOAHUNEM

H. A. Manaxosa', H. I Huxoaaesa'
TOxm0-YpasibeKkuit rocy1apeTBeHHbli YHIBEPCUTeT, I. JeIa0nHCK,
Poccuiickas Pejiepartiust

Crarbs MOCBSIIIEHA YUCJEHHOMY HCCJIEIOBAHUIO OIHOTO KJIACCa CTOXACTUIECKUX MOJIe-
Jeit HenmmHeiHOM mudpdy3un u puabTpaMK co CIydaitHbIM HadabHBIM yeaoBueM [1loyosr-
repa —Cugoposa. Mojienb HetmHeHO! 1uddy3un OMUCHIBAET ITPOIECC N3MEHEHHS [TOTEHIH-
aJia KOHIIEHTPAINY BA3KOYIIPYTOi XKUIKOCTH, (DUIBTPYIOIIENCs B IIOPUCTON Cpejie, MOJIEIb
HEeJIMHEIHON (DUJIBTPAIIUU OIUCHIBAET 3aBUCUMOCTD JaBJIEHUS BI3KOYIPYTOil HECZKUMAEMOI
JKUJKOCTH, GUILTPYIONIEHCS B IOPUCTOM ILIACTE, OT BHEIIHEl Harpy3ku. PaccMaTpuBaeMbie
MOJIEJT U3YYeHBl B pPAMKax abCTPAKTHOIO IMOJIYJIMHEHHOTO ypaBHEHUS COOOJIEBCKOTO THUIIA
C P-KOSPIUTUBHBIM U S-MOHOTOHHBIM OoriepaTopoM. [TocTpoen aaropurM 9ucjaieHHoro ucciie-
JIOBaHUsI OJHOI'O KJjacca 3aJad MaTeMaTudeckoil (pusuku. [lpusesen mpumep mpuMeHEHUs
aJITOPUTMa K UCCJIeIyeMO CTOXACTUIECKO Mojiesin HeJinHeliHo# nuddy3un.

Karouesvie crosa: ypagHerus coboae8ckozo muna; Cmoracmuieckas Modeas HeauHel-
HOU Juddysuu; cmoracmudeckas Modeab HeAUHETUHOT PUADMPAUUL; TPOEKUUOHHBIT Me-
moo.
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