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This study examines the dynamic behavior of a micro-beam resting on an elastic
polymeric layer with finite depth, with a particular focus on the beam’s nonlinear transient
and steady-state response to a base excitation. The investigation considers both the beam’s
transverse motion and the elastic polymeric foundation’s nonlinear squeezing motion within
the coupled nonlinear governing equations. In order to examine the influence of different
materials on the system’s overall response, the nonlinear governing equations are discretized
with respect to spatial coordinates and integrated over time, thereby obtaining transient
solutions. In regard to frequency response, the coefficients of the harmonic Fourier-expanded
response are obtained by balancing energy within a period. A series of numerical tests
were performed, including the fast Fourier transform (FFT), the determination of time
characteristics, and the phase portrait of the system. These tests encompassed a range of
scenarios, including constant, stepwise, pulse, and harmonic accelerations. Furthermore,
studies have been conducted to ascertain the frequency response of the system to single
harmonic input signals with varying frequencies.
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Introduction

The issue of unregulated vibrations poses a significant threat to the reliability and
durability of mechanical systems, leading to the progressive deterioration of structural
materials. In the absence of prompt mitigation, vibration loads can result in critical damage
and complete equipment failure. In light of these challenges, specialists in engineering,
mechanics, and related fields are undertaking endeavors to develop methodologies aimed
at mitigating the deleterious effects of vibrations. Novel methods for detecting vibrations
have the potential to enhance signal quality and reduce noise, as evidenced by recent
studies [1, 2].

Furthermore, researchers have repeatedly underscored that vibrations can inflict
detrimental effects not only on individuals but also on buildings and other structures.
A detailed analysis of studies such as [3] reveals a variety of strategies for limiting vibro-
dynamic impacts on building structures.
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The proper selection of vibration isolation methods is of paramount importance, as it
not only influences the efficiency of the equipment but also has implications for human
safety. In recent decades, there has been a proliferation of various methods for vibration
isolation, including passive [4], active [5], and semi-active techniques [6].

In pursuit of an optimal solution, the researchers propose a combination of technologies
that integrate the simplicity of passive isolation with the dynamic control of active systems.
This approach enables the attainment of substantial vibration protection while exhibiting
minimal energy expenditure. One such method is the development of passive bioinspired
insulators, which draw inspiration from bioinformatics [7, 8]. The objective of these
insulators is to combine the stability and energy efficiency of passive designs with the
high isolation capabilities of semi-active and active insulators [9]. The efficacy of this
methodology is substantiated by the findings of the study conducted by [10].

Damping elastomers are frequently utilized as the foundation due to their exceptional
elasticity and damping properties. Rubber has historically been a material of choice for
vibration isolation, due to its softness and inherent damping properties. Nevertheless,
polyurethane is emerging as a viable alternative, offering structural and cost benefits.
Thermoplastic elastomers (TPEs) have emerged as potential alternatives to vulcanized
rubber, offering comparable mechanical properties and the additional benefit of
recyclability.

It is the authors’ understanding that previous research on the vibration of a beam
supported by an elastic polymeric bed has commonly employed models that represent the
bed using equivalent or distributed springs and dampers based on the Winkler or Pasternak
models. In general, these models do not take into account the effects of inertia. This is
a reasonable assumption in the context of static analysis and low-frequency actuation
scenarios, given the low density of the elastomer. Nevertheless, in scenarios involving
relatively high-frequency actuations, the inertial characteristics of the system may become
a notable factor, necessitating further examination. In the present study, we address this
limitation by introducing a nonlinear dynamic model via elastodynamic equation of the bed
to describe the behavior of a beam resting on an elastic polymeric foundation, accounting
for the coupled motion of the foundation. The model accounts for mid-plane stretching of
the beam through an averaging technique, resulting in an integro-differential equation [11,
12]. The foundation material is characterized by Hookean behavior, while the consideration
of nonlinear strains is incorporated. Notably, shear effects are intentionally omitted in this
formulation. The study investigates the influence of utilizing different elastic polymeric
materials on the transient as well as steady-state response of the system.

1. Model Description

The structure is composed of two components as show in Figure 1. The first component
is a thin micro-beam and is composed of metal. The second component is the foundation
which exhibits a thickness greater than that of the top plate. The second layer is composed
of an elastomer. It is hypothesized that the materials constituting the micro-beam and
the foundation are homogeneous. The structure is exposed to external force with some
acceleration a0(t). For this reason, that the structure will undergo vibrations in both
the longitudinal and transverse directions. The model under consideration comprises the
micro-beam, which is defined by the following dimensions: length L, width b, and thickness
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hb. The elastic polymeric layer possesses identical dimensions to the micro-beam, but its
thickness, denoted hf , differs.

Fig. 1. Diagram of the micro-beam with an elastic polymeric layer before the force is applied

This allows us to present the governing equation for the transverse motion of the
micro-beam as a nonlinear integro-differential equation:

N1(Wb, a0(t)) = EbI
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where the geometric characteristics of the micro-beam are defined by its length L, width b,
and thickness hf . The micro-beam’s composition, i.e., the material from which it is made,
is represented by the effective Young’s modulus Eb, density ρb, and equivalent damping
coefficients cb. A = bh is the cross section area, I = 1

12
dh3b is the moment of inertia of the

micro-beam. a0(t) is the external acceleration field. Ff represents the force exerted by the
foundation on the micro-beam.
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The desired function Wb(x, t) is the deflection of the micro-beam, defined to be positive
in the direction to the right.

The nonlinear dynamic equation of motion of the elastic polymeric layer considering
nonlinear strains in axial and transversal directions can be written as follows:

N2(Wf) = ρf
∂2Wf

∂t2
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−Ef
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)

= 0, (2)

where Wf (x, z, t) and Ef is the deflection and effective Young’s modulus of the elastic
polymeric layer respectively, ρf and cf represent the density and equivalent damping
coefficients of the elastic polymeric layer accordingly.

Boundary conditions of equations (1), (2) are as follows:

Wb(0, t) = 0,
∂Wb

∂t
|x=0 = 0, Wb(L, t) = 0,

∂Wb

∂t
|x=L = 0,

Wf(x, 0, t) = Wb(x, t), Wf (x, hf , t) = 0.
(3)
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2. Numerical Solution

Given the mobile nature of the boundary condition, a transformation was implemented
to accommodate this motion:

Wf (x, z, t) = U (x, z, t) +

(

1−
z

hf

)

Wb. (4)

The concept of dimensionless quantities is introduced:

wb =
W

hf
, u =

U

hf
, ξ =

x

L
, ζ =

z

hb
, τ =

t

t∗
,Ω = ωt∗ (5)

where t∗ is a time scale, t∗ =
√

ρAL4

EbI
.

In order to study the behavior of a structure under the influence of an external force,
the Galerkin method was applied. The solutions of system (1), (2) can be expressed
as follows in terms of the basis function. The basic functions satisfy the boundary
conditions (3).

wb(ξ, τ) =

N
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an(τ)φn(ξ), (6)
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Subsequent to the substitution of the solution (6), (7), the dimensionless quantities (5)
and expression (4) into the system of differential equations (1), (2), we obtain nonlinear
ordinary differential equations that delineate the structural deflection:
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where the coefficients M
(1)
nk , C

(1)
nk , K

(1)
nk and so on, are constructed by scalarly multiplying

the error equations in L2(G).
Frequency analysis constitutes a crucial methodology for the study of vibrating

systems, as it enables the determination of their dynamic characteristics and behavior
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under the influence of external forces. This enables optimization and enhancement of their
performance [13]. In a manner analogous to the method outlined in [14], the system of
equations is presented in the subsequent form:

R(∧(τ)) = 0. (10)

Accordingly, for the periodic frequency response of the given equation (10), a Fourier
expansion may be written as follows:

∧(j)(τ) =

∞
∑

n=0

a(j)n sin(nΩτ) + b(j)n cos(nΩτ) , j = {1, 2}. (11)

The solution space, which is infinite-dimensional (equation 11), can be expressed in a
reduced P-dimensional space as shown below:

∧
(j)
P (τ) =

P
∑
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a(j)p sin(pΩτ) + b(j)p cos(pΩτ), j = {1, 2}; P = 1, 2, 3 . . . (12)
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(j)
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2
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(j)
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2

where Aj
p is the dimensionless longitudinal (j = 1) and transversal (j = 2) deflection

amplitude of system in the p harmony.

3. Numerical Results and Discussion

This section offers an evaluation of the study’s outcomes, accompanied by illustrative
examples the underscore the significance of employing elastic polymer layers. According
to the model outlined in Section 2, the micro-beam and the elastic polymer layer exhibit
the characteristics enumerated in Table 1 and Table 2. The micro-beam is composed
of steel, while the elastic polymer layer exhibits viscoelastic properties. The numerical
experiments conducted involved the consideration of three distinct materials: rubber, The
second material is thermoplastic elastomers with the addition of sodium [15] (TRE) and
mastic-type material ADEM-M [16].

Table 1

Material and geometrical properties of micro-beam
Length L 1000 µm
Thickness hb 10 µm
Width b 500 µm
Density ρb 2330 kg/m3

Effective Young’s modulus Eb 169 GPa

The present study employs the Hilbert basis expansion in spatial coordinates is used
to solve nonlinear partial differential equations. The basis functions in the current study
are as follows:

ψn(ζ) = sin(nπζ); ψn(0) = 0; ψn(1) = 0,
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Table 2

Properties of the elastic polymeric layer
Length L 1000 µm
Thickness hf 70 µm
Width b 500 µm
Material 1 – Rubber
Density ρf 1333 kg/m3

Effective Young’s modulus Ef 9.7 MPa
Material 2 – TPE
Density ρf 1000 kg/m3

Effective Young’s modulus Ef 18.8 MPa
Material 3 – ADEM-M
Density ρf 1250 kg/m3

Effective Young’s modulus Ef 12 MPa

ϕn(ξ) = 1− cos(2nπξ); ϕn(0) = ϕn(1) = 0; ϕ′

n(0) = ϕ′

n(1) = 0.

The structure is driven in the z-direction as a result of an applied acceleration. This
section will present the findings of a series of computational experiments. The goal of
the experiments is to determine the response of a structure consisting of a micro-beam
and various elastic polymeric layers, the properties of which are described in Table 2, to
the applied external force at different values of the acceleration amplitude. The applied
external force takes the form of a constant value, Heaviside step function, pulse function,
and harmonic varying acceleration. All graphs will illustrate the deviation at the central
point of connection of the micro-beam and the elastic polymeric layer.

Prior to examining the behavior of construction in response to external forces, it is
imperative to illustrate the necessity of employing elastic polymeric layers. As illustrated
in Fig.2, the amplitude of vibrations of a micro-beam with an elastic polymer layer of
Material 1 is approximately two times less, than that of a micro-beam without it.

Fig. 2. The non-dimensional deflection of of the construction under the influence of acceleration
a0(τ) = a0H(τ), a0 = 50 with/without elastic polymeric layer

A series of experiments was conducted with the objective of determining the structural
response to acceleration at varying values. Firstly, the case is considered when the
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acceleration is a constant value. In this case the time derivatives of wf and wb are zero.
Applying the Galerkin weighted residual method results in a system of algebraic equations.
Solving this system yield the static values of wf and wb will be obtained.

Fig. 3. The non-dimensional deflection of the construction at the central point of connection of
the micro-beam and the damping layer under the influence of acceleration
a) a0(τ) = a0
b) a0(τ) = a0H(τ), where H(τ) is the Heaviside function
c) a0(τ) = a0δ(τ), where δ(τ) is the pulse function

Fig. 3a depicts the impact of a constant acceleration a0 on the dimensionless deflection
of a structural system comprising a micro-beam (wb) and an elastic polymeric layer (wf).
As the constant acceleration increases, the deflection of the micro-beam also increases in
accordance with the governing differential equation.

Fig. 3b and Fig. 3c show the effect of the applied acceleration a0(τ) on the non-
dimensional deflection of construction, when the acceleration is in the form of a Heaviside
step function and pulse function accordingly, where a0 = 25. The oscillation’s amplitude
reaches a maximum at the beginning of the time and then gradually decreases until it
reaches a static position when acceleration is applied in the step form. In the case of
applying a pulse acceleration, the amplitude reaches zero. The materials exhibit disparate
vibration isolation properties. It can be observed that when utilizing Material 1, the system
oscillates with the greatest amplitude. Material 2 exhibits the most minimal oscillation
amplitude among all the materials tested, irrespective of the type of acceleration applied.
It has been demonstrated that the utilization of this material will enhance the stability
of the system. A more detailed examination of the properties of analogous materials may
prove a fruitful avenue for future research.
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The following experiments was conducted to ascertain the response of the structure to
harmonic acceleration with varying amplitude, which is expressed in the following form:

a0(τ) = a0sin(Ωτ), where Ω = 30.

Material 1 was used for the experiment, the characteristics of this elastic polymeric layer
are evaluated in accordance with the data presented in Table 2.

Fig. 4. The non-dimensional deflection of the structure under the influence of acceleration a0 at
the central point of connection of the micro-beam and various elastic polymeric layers a) Time
history; b) Phase portrait; c) FFT analysis

The time history (Fig. 4a) demonstrates the amplitude and evolution of the system
under dynamic load. Phase portraits (Fig. 4b) are a means of visualizing the trajectories
of the system, thereby confirming its stability and possible nonlinear phenomena (i.e.,
bifurcations). Fig. 4c illustrates the results of the fast Fourier transform (FFT) analysis.
The system exhibits nonlinear behavior, with primary resonance occurring at a frequency
of Ω = 30 and secondary resonance occurring at a frequency of 2Ω.

To comprehend how the structure or device responds to different input frequencies,
a comprehensive understanding of frequency response analysis is required. This analysis
provides insights into the stability, functionality, and potential issues of the structure by
identifying its behavior, resonance sites, and frequency-dependent features. The design
and optimization of structure in various domains, including engineering, electronics, and
signal processing, rely on this study.

Fig. 5 displays the non-dimensional amplitude of the micro-beam’s center deflection
as a function of the non-dimensional excitation frequency under the applied harmonic
acceleration, which can be written as:

a0(τ) = a0sin(Ωτ)
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Fig. 5. The non-dimensional longitudinal (a) and transversal (b) amplitude of the micro-beam’s
center deflection versus properties of studied materials for different amplitudes of the applied
harmonic acceleration

The structure under study exhibits quadratic and cubic nonlinearities, as well as
coupling nonlinearities, which may result in the emergence of secondary resonances in
addition to the primary resonances.

Fig. 5 shows the non-dimensional amplitude of the micro-beam‘s center deflection
versus various amplitudes of the applied harmonic acceleration a0. The frequency of the
initial harmonic input is swept from a value of zero to a desired value that is greater than
the system’s natural frequencies ω1

n = 27.8 and ω2
n = 72.3. The amplitude of the center

deflection of the micro-beam demonstrates an increase in accordance with the amplitude of
the applied harmonic acceleration. When the applied acceleration reaches a relatively high
value, the system’s response exhibits nonlinear behavior. System clearly demonstrates
a typical jumping phenomenon at the primary resonance Ω ≈ ω1

n, and there is also a
secondary resonance when the excitation frequency is Ω ≈ ω2

n.
This study presents a comprehensive analysis of the factors necessary to ensure

optimal system performance, minimize the amplitude of system vibrations, and guarantee
structural integrity under diverse conditions. To comprehend the system’s behavior,
we employed sophisticated techniques such as frequency response analysis, numerical
modeling, and nonlinear dynamic modeling. Our findings can inform the development
of effective strategies to reduce vibrations, enhance stability, and create elastic systems
capable of withstanding various influences.

Conclusion

This study focuses on the nonlinear transient and steady-state behavior of a micro-
beam situated on an elastic polymeric bed, which is comparable to those employed in
isolation systems. In order to account for the inertial effects of the bed, the coupled
governing equations obtained from the elasto-dynamic equation incorporate both the
nonlinear squeezing motion of the elastic polymeric layer and the transverse motion of
the micro-beam.

Subsequently, the nonlinear governing equations are discretized across spatial
coordinates and then integrated in time to capture transient reactions. The experiments
included cases with constant, step, and pulse excitation accelerations. Based on the
observations, conclusions were drawn about the reactions of damping materials under
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external influence. The most common Material 1 (rubber) exhibited the largest deflection
amplitude, while Material 2 (thermoplastic elastomers) demonstrated the smallest
deflection amplitude.

The behavior of the system was analyzed under different materials and operating
conditions using frequency response analysis. Frequency response analysis is employed
to investigate the behavior of the structure under diverse material qualities and base
excitation conditions. This method represents periodic responses by Fourier expansion
and acquires coefficients by energy balancing within a period. This method was employed
to predict the primary and secondary resonances in the harmonics of the response.

The present study contributes to our comprehension of the dynamics of beams
supported by elastic polymer foundations. The findings offer a foundation for the
development of resilient structures with enhanced isolation capabilities, particularly in
the context of diverse material characteristics and operational scenarios. Future research
could delve into more intricate models and an array of materials.
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НЕЛИНЕЙНЫЙ АНАЛИЗ БАЛКИ НА УПРУГОМ
ПОЛИМЕРНОМ ОСНОВАНИИ: ИССЛЕДОВАНИЕ
ПЕРЕХОДНЫХ И ЧАСТОТНЫХ ХАРАКТЕРИСТИК

А. Д. Кащеева1, А. А. Замышляева1, Г. Резазаде2,3

1Южно-Уральский государственный университет, г. Челябинск, Российская
Федерация,
2Центр технологий материалов Сколтеха, г. Москва, Российская Федерация,
3Университет Урмия, г. Урмия, Иран

В этом исследовании рассматривается динамическое поведение микро-балки, ко-
торая опирается на эластичное полимерное основание конечной толщины, особое вни-
мание уделяется нелинейной переходной и устойчивой реакции микро-балки на базо-
вое возбуждение. Рассматривается как поперечное движение балки, так и нелинейное
сжимающее движение упругой полимерной основы в рамках связанных нелинейных
дифференциальных уравнений. Чтобы изучить влияние различных материалов на об-
щую характеристику системы, нелинейные управляющие уравнения дискретизируют-
ся по пространственным координатам и интегрируются по времени, тем самым полу-
чая решения для переходных процессов. Что касается частотной характеристики, то
коэффициенты гармонической характеристики с расширением по Фурье получаются
путем балансировки энергии в течение определенного периода. Был проведен ряд чис-
ленных экспериментов, включая быстрое преобразование Фурье (FFT), определение
временных характеристик и фазового портрета системы. Эти эксперименты охваты-
вали постоянные, ступенчатые, импульсные и гармонические ускорения. Кроме того,
были проведены исследования для определения частотной характеристики системы на
гармонические входные сигналы с различной частотой.

Ключевые слова: нелинейный анализ; колебания; переходные решения; частотная

характеристика.
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