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We consider a model of a braking device described by a differential equation relating the

brake shoe rotation angle and its relative angular velocity. The dry friction torque depends

on the rotation angle and angular velocity as a piecewise function, while the moment of

inertia of the brake shoe device under consideration is a small quantity. From a mathematical

standpoint, this equation reduces to a system of two differential equations, one of which

contains a small parameter at the highest derivative, a so-called Tikhonov system. The

system under consideration has a single equilibrium state, but it is unstable. It is self-

excited, and relaxation self-oscillations will set in. Our goal was to provide an example of

such a right-hand side of the equation of motion for which experimental phenomena are

sufficiently accurately explained, and to obtain an asymptotic expansion of the solution as

a function of time. To find the asymptotic expansion of an arbitrary-order solution to our

problem, we used the method of constructing boundary functions. The justification of the

asymptotic expansion can be carried out as in classical theory.

Keywords: singularly perturbed equations; degenerate equation; asymptotic expansion;

boundary function method; relaxation oscillations.

Introduction

A real phenomenon, such as the operation of an object or the course of a process,
is described in theory using differential equations. Unlike problems arising from practice,
mathematical idealization often neglects small factors. While discarding some information
that has a negligible effect on the nature of the process, we should simultaneously include
quantities in the equations that, although small, can significantly alter the picture of the
phenomenon. Thus, the research result will be more realistic if it takes into account the
dependence on small parameters. This concept is inherent in singular perturbations, as
opposed to regularly perturbed problems. Examples of numerical solutions of systems of
differential equations can be found in [1], the application of asymptotic methods see [2].

1. Problem Statement

Let us consider the mechanical oscillations that can occur under certain conditions
in bodies experiencing high friction but having a small mass [3]. For concreteness, let us
assume that we are talking about a brake pad characterized by the following equation of
motion

εϕ̈ = −kϕ +M(Ω− ω, ϕ).
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The latter is reduced to a system including an equation with a small parameter ε > 0 at
the derivative

{

εω̇ = −kϕ +M(Ω− ω, ϕ),
ϕ̇ = ω.

(1)

Here ϕ – is the brake pad rotation angle (relative to the position at which the spring torque
is zero), ε – is the brake pad moment of inertia, k > 0 – is the system elasticity coefficient,
Ω – is the shaft angular velocity, and we will assume that Ω = const. Let M(Ω − ω, ϕ) –
be a function expressing the dependence of the dry friction torque on the relative velocity
Ω− ω and angle ϕ. It follows from the technical data that

M(Ω− ω, ϕ) =

{

kϕ, |kϕ| ≤ M0(Ω− ω),
M0(Ω− ω), |kϕ| > M0(Ω− ω).

(2)

We assume that M0(θ) = (θ−m0)
2 +M1, where M1 = minM0(θ), θ = Ω−ω. Besides, let

Ω < m0.
Let the initial point on the phase plane (ϕ, ω) have coordinates (ϕ0, ω0), wherein

kϕ0 < M0(Ω− ω0). Then the solution is described by a system where the first inequality
from (2) is satisfied

{

εω̇ = 0,
ϕ̇ = ω,

ω(0) = ω0, ϕ(0) = ϕ0,

(3)

and has the following form ω = ω0, ϕ = ω0t + ϕ0. Therefore, this solution on the phase
plane will correspond to a line segment extending in the direction of increasing angle ϕ,
and from the point where kϕ(T ) = M0(Ω− ω0), the solution will be functions defined by
the following system when the second inequality from (2) takes effect:

{

εω̇ = −kϕ + (Ω− ω −m0)
2 +M1,

ϕ̇ = ω,

ω(T ) = ω0, ϕ(T ) = ω0T + ϕ0.

(4)

It is known from [4] that at the breakdown point, where the transition to another stable
solution occurs,

M ′

0ω = −2(Ω− ω −m0) = 0,

and therefore, at this point ωc = Ω−m0, wherein

M ′

0ω

{

< 0, ω < Ω−m0,

> 0, ω > Ω−m0,
(5)

from which it follows that the stability region of the root of the system degenerate equation
will be determined by the following inequality

Ω− ω > m0.

At the transition point to another stable branch at t = T , the following relations are
satisfied

ω = ω0,

|k(ω0T + ϕ0)| = M0(Ω− ω0) = (Ω− ω0 −m0)
2 +M1 = M0.

(6)
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2. Constructing the Asymptotics of the Solution

The degenerate system corresponding to (1) under the second condition from (2) has
the following form

0 = −kϕ + (Ω− ω −m0)
2 +M1,

ϕ̇ = ω,

ϕ(T ) = ω0T + ϕ0,

Let us denote its solution by the pair of functions ω̄0(t), ϕ̄0(t). We solve the first (final)
equation for ω to obtain

(Ω− ω̄0 −m0)
2 = kϕ̄0 −M1 ≥ 0,

ω̄0 = Ω−m0 ±
√

kϕ̄0 −M1.

Taking into account inequalities (4), we classify the branch of the solution corresponding to
the “+” sign as unstable, and the branch corresponding to the “–” sign as stable. The phase
plane picture reflects the situation where, due to equality (6) corresponding to the moment
of time t = T , the solution is located on the unstable branch, and therefore “repulses”
from it beginning to “abstract” towards the stable branch. Based on the algorithm for
constructing the asymptotics of the Tikhonov system solution [5], we select it as the
zero term of the first component of the regular part of the asymptotics. For the second
component of the regular part, we have the following problem

ϕ̇0 = Ω−m0 −
√
kϕ̄0 −M1,

ϕ̄0(T ) = ω0T + ϕ0.

We solve the equation for the unknown function ϕ̄0(t), and obtain an integral in the form

(Ω−m0 −
√

kϕ̄0 −M1)
2(m0−Ω)k−1

exp
{

2k−1
(

Ω−m0 −
√

kϕ̄0 −M1

)}

= C exp{t− T}.

The constant C is found from the initial condition, namely,

C =
(

Ω−m0 −
√

k(ω0T + ϕ0)−M1

)2(m0−Ω)k−1

×
× exp

{

2k−1
(

Ω−m0 −
√

k(ω0T + ϕ0)−M1

)}

.

Then the first component of the regular part of the asymptotics ω̄0(t) will be set by the
equality

ω̄0(t) = Ω−m0 −
√

kϕ̄0(t)−M1 = ωc −
√

kϕ̄0(t)−M1 (7)

after substituting the function we have just defined ϕ̄0(t).
Thus, we found the zero terms of the regular part of the asymptotics for the considered

problem. However, while its second component ϕ̄0(t) satisfies the initial condition as a
solution to the Cauchy problem, this is not the case for the first component ω̄0(t). It is
a solution to the final equation and, generally speaking, ω̄0(T ) 6= ω0. To eliminate this
discrepancy in the solution associated with this circumstance, we introduce the function

Πω0(τ), called the boundary function, which depends on the stretched variable τ =
t− T

ε
.
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Strictly speaking, we should also introduce the boundary function Πϕ0(τ). Thus, we seek
an asymptotics in the form of a series in terms of powers of ε

ω(t, ε) = ω̄(t, ε) + Πω(τ, ε) =
∞
∑

i=0

εi(ω̄i(t) + Πiω(τ)),

ϕ(t, ε) = ϕ̄(t, ε) + Πϕ(τ, ε) =
∞
∑

i=0

εi(ϕ̄i(t) + Πiϕ(τ)),

(8)

where the functions ω̄i and ϕ̄i, depending on the argument t, define the regular part of the
asymptotics, and the boundary functions Πiω and Πiϕ depend on the stretched variable τ .

ε
dω̄

dt
+

dΠω

dτ
= −k (ϕ̄(t) + Πϕ(τ)) + (Ω−m0 − ω̄(t)− Πω(τ))2 +M1,

dϕ̄

dt
+

1

ε

dΠϕ

dτ
= ω̄(t) + Πω(τ). (9)

We add the initial conditions to them at t = T

ω̄(T ) + Πω(0) = ω0, ϕ̄(T ) + Πϕ(0) = ω0T + ϕ0. (10)

We equate the functions with the same powers ε, depending on the same variables, on
the left-hand and right-hand sides of the equations. The functions of the regular part in
zero order have already been found. The problems for the boundary functions Π0ω(τ) and
Π0ϕ(τ) will be as follows

dΠ0ω

dτ
= −kΠ0ϕ− 2(Ω−m0 − ω̄0(T ))Π0ω +Π0ω

2,

Π0ω(0) = ω0 − ω̄0(T ).

dΠ0ϕ

dτ
= 0,

Π0ϕ(∞) = 0.

From the second equation with the initial condition, we find that Π0ϕ(τ) ≡ 0. Substituting
this solution into the first equation, taking into account the initial condition, we obtain
the following relation for the boundary function Π0ω(τ)

Π0ω(τ) = 2(ωc − ω̄0(T )) ·
[

1− ω0 − 2ωc + ω̄0(T )

ω0 − ω̄0(T )
exp{2(ωc − ω̄0(T ))τ}

]

−1

.

It is easy to see that, due to formula (7), written for the argument t = T , we have
the inequality ω̄0(T ) < ωc. Therefore, the following exponential estimate is valid for the
boundary function found

|Π0ω(τ)| < C exp{−æτ}, (11)

where æ > 0, C > 0 – are some constants.
We continue constructing the asymptotics. From equations (9) in i-th order, we obtain

˙̄ωi−1 = −kϕ̄i + 2(ωc − ω̄0)ω̄i +

i−1
∑

j=1

ω̄i−jω̄j, ˙̄ϕi = ω̄i.
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We express the function ω̄i(t) from the first equality to obtain

ω̄i = 2−1(ωc − ω̄0)
−1

[

kϕ̄i + ˙̄ωi−1 −
i−1
∑

j=1

ω̄i−jω̄j

]

.

We substitute into the second equation of the system to obtain an equation to find the
second component of the regular part of the asymptotics of the following form

˙̄ϕi = αi(t)ϕ̄i + βi(t),

where the coefficients αi(t) and βi(t) are expressed through the functions ω̄j with indices
j = 0, 1, ..., i− 1. We solve this first-order linear inhomogeneous equation with the initial
condition following from (10)

ϕ̄i(T ) = 0.

after which ω̄i(t) also defined. Thus, if the functions of the regular part have been
constructed in the previous steps, we can proceed to finding the functions of the next
indices. Next, we construct the boundary functions in the i-th order. We can easily see
from (9) and (10) that the problem for Πiϕ(τ)

dΠiϕ

dτ
= Πi−1ω(τ),

Πiϕ(∞) = 0.

Notably, the condition at infinity (standard for boundary functions [5]) should guarantee
their decrease at ε → 0. From this, we arrive at the solution

Πiϕ(τ) =

τ
∫

∞

Πωi−1(s)ds.

Now let us explain how the boundary functions Πiω(τ) are constructed. When we
substitute the series by the small parameter from the boundary part of the asymptotics
and change the variable in the first equation of (9), we should take into account the rule
for transforming the right-hand side of the inhomogeneous equations (see [5]). In the case
of a quadratic right-hand side, as in our example, we obtain

dΠ0ω

dτ
+ ε

dΠ1ω

dτ
+ . . .+ εi

dΠiω

dτ
+ . . . = −kϕ̄0(T + ετ)− . . .− kεiϕ̄i(T + ετ)+

+ (ωc − ω̄0(T + ετ)− εω̄1(T + ετ)− . . .− εiω̄i(T + ετ)− . . . −

− Π0ω(τ)− εΠ1ω(τ)− . . .− εiΠiω(τ)− . . .)
2
+M1 + kϕ̄0(T + ετ) + . . .+

+kεiϕ̄i(T + ετ)−− (ωc − ω̄0(T + ετ)− εω̄1(T + ετ)− . . .− εiω̄i(T + ετ)− . . .)
2 −M1

with the initial condition

Πωi(0) = −ω̄i(T ).

2025, vol. 12, no. 4 7



B. G. Grebenshchikov, Е. А. Derkunova

Expanding the functions of the regular part ω̄i with the center of expansion t = T into
series in terms of powers of ετ and equating the terms with the same powers ε on the
right-hand and left-hand sides of the equation, we obtain problems for determining the
boundary functions Πiω(τ):

dΠωi

dτ
= 2 (−ωc + ω̄0(T ))Πiω(τ) + 2 ( ˙̄ω0(T )τ + ω̄1(T ))Πi−1ω+

+2

(

¨̄ω0(T )

2!
τ 2 + ˙̄ω1(T )τ + ω̄2(T )

)

Πi−2ω + . . .+

+2

(

ω̄
(i)
0 (T )

i!
τ i +

ω̄
(i−1)
1 (T )

(i− 1)!
τ i−1 + . . .+ ˙̄ωi−1(T )τ + ω̄i(T )

)

Π0ω +

i
∑

j=0

Πi−jωΠjω,

Πiω(0) = −ω̄i(T ).

The resulting initial value problem is formulated for an inhomogeneous equation linear
with respect to the desired function and solved using standard methods. Notably, due to
known estimates for the linear equation, an exponential estimate of the form (11) will
we valid. Thus, we defined the boundary functions Πiω(τ) after which we can eaility find
Πiϕ(τ) using the saforementioned method. Obviously, an estimate of the form (9) will also
be valid for them.

3. Result Statement

The construction of the asymptotic terms is completed. It remains to make a statement
about the degree of approximation of the constructed series to the solution of our problem.
It follows from [5] that an asymptotic expansion of the solution x(t, ε) = = (ω(t, ε), ϕ(t, ε))
to problem (4) is obtained at ε → 0 on the closed interval [T, T1], i.e., the following estimate
holds:

max
[T,T1]

|x(t, ε)−Xn(t, ε)| = O(εn+1),

where Xn(t, ε) are partial sums of the series (8). This result can be proven similarly to [5].
Thus, the phase plane (ϕ, ω) has a transition to the stable branch (6) of the solution of
the degenerate system. Then, moving along this branch, the system reaches a breakdown
point and again finds itself on the original line described by (3). Consequently, relaxation
oscillations of the studied model can be traced on the phase plane, as described in [3, 4].
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