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The problem of the dynamics of fluid friction bearings was formulated in the article. For
"rigid system" the classical methods of integration of the system of differential equation of
movement proved to be unsuitable because of the need to reduce the next step of integration
in some parts of the journal center trajectory to very small values. We have described the
main approaches that used for solving the problem. We also presented the main methods
that have proven themselves in the solution of problems of the dynamics of rapidly rotating
rotors and autonomous bearings of heat engines. Numerical methods for "rigid system"and
algorithms for solving the problems of the dynamics were given. With the help of numerical
experiments coefficients of the equations was performed. The step for calculating adjusted
to the minimum value of the discrepancy.).
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Introduction

The movement of the journal on the lubricating layer in heavy-loaded bearing of
fluid friction as a free rigid body can be represented by a set of two of his movements:
forward together with the mass center of the journal in the inertial coordinate system and
the spherical around the center of mass. The problem of the dynamics of fluid friction
bearings in this case reduces to solving a system of approximate equations written in
matrix form:

mü = F (t)− P (u, u̇, γ, γ̇);
Jγ̈ =Ma(t)−Mr(u, u̇, γ, γ̇) +MG,

(1)

where u, γ – the displacement vector of the journal center and angular movements of
the journal in the inertial space; m, J – the parameters which characterize the mass and
moment of inertia of the journal; F (t), Ma (t) – active force and moment couple of forces
acting on the journal; P , Mr – the force and moment acting on the bearing by the lubricant
layer; MG – the gyroscopic moment.

The system of equations (1) to the journal, rotating at an angle in the bearing, can
be written as

mü+ P (u, u̇, γ, γ̇) = f(τ) ;
Jγ̈ +Mr(u, ü, γ, γ̈) = M̄a (τ) + M̄G (τ) = M̄ (τ) ,

(2)

where

u =

[

x
y

]

; P = −
kF
h0ω

2
0

[

R̄x (u, u̇, γ, γ̇)
R̄y (u, u̇, γ, γ̇)

]

; f =

[

fx (τ)
fy (τ)

]

;
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γ =

[

α′

β ′

]

; Mr = −
kM
ω2
0

[

M̄rx (u, u̇, γ, γ̇)
M̄ry (u, u̇, γ, γ̇)

]

; M̄ (τ) =

[

M̄ax (τ) + M̄Gx (τ)
M̄ay (τ) + M̄Gy (τ)

]

,

u = u/h0; x, y, α
′, β ′ – dimensionless coordinates of the journal in the inertial space; R̄x,

R̄y, M̄rx, M̄ry – dimensionless reaction of the lubricant layer determined from the Reynolds
equation; m, J – mass and moment of inertia of the journal; fx (τ), fy (τ), M̄ax (τ),
M̄ay (τ) – external forces and moments; M̄Gx (τ), M̄Gy (τ) – gyroscopic moments; τ = ω0t
– the dimensionless time; kF , kM – coefficients for transfer to dimensionless quantities
forces and moments; f (τ) = F (t) /ω2

0h0; M̄ (τ) = M (t) /ω2
0 ; kF = BDµ0ω0/ψ

2;
kM = BD2µ0ω0/2ψ; ψ = h0/R, R – the radius of the journal.

In the so-called massless models, when the forces of inertia due to the motion of the
stud on a thin lubricating layer have the second order of smallness in comparison with the
loads F (t), Ma(t), the equation of motion (1) is replaced by the equilibrium equations:

0 = F (t)− P (u, u̇, γ, γ̇);
0 =Ma(t)−Mr(u, u̇, γ, γ̇) +MG.

(3)

Methods for solving problems of the dynamics of the journal on the lubricating layer
in the bearing depends primarily on the nature of stresses. For bearing of piston engines
the system of motion equations are usually considered in the form of the equilibrium
equations (3), neglecting the weight force of the stud. In considering the tasks of stability
of rotors it is in the form of Newton (2). In this case, a stability of the balanced journal
is often examined by linearization of the motion equations [1, 2]. This approach allows us
to accurately determine the critical speed at which the equilibrium position of the journal
becomes unstable, but does not provide information about the nature of the motion path
of the stud. Knowledge of the trajectory (orbit) of the journal motion loaded with inertial
forces from the unbalanced mass need to assess its orbital stability. Therefore, only the
solution to the problem in the nonlinear formulation makes it possible to calculate and
consider trajectory and journal oscillations with amplitudes that are commensurate with
the magnitude of the gap between the journal and the bearing [3, 4].

1. The main approaches to solving problems of dynamics

If we perform the discretization of the motion equations system (2) with respect to
time, the decision in going to the next step in time can be obtained using the explicit
or implicit method of calculation. In the explicit scheme unknowns are the coordinates
of the journal center and pressure, and in the implicit scheme - the pressure and rate
of change of the journal position. In [4], these methods have been studied in detail, and
preference was given to the implicit scheme, since in the explicit scheme there is a tendency
to accumulation of rounding errors in repeated arithmetic operations.

A common way to solve the system (2) is to reduce it to a first order differential
equation















u̇ = ν;
mν̇ + P (u, v, γ, υ) = f (τ);
γ̇ = υ;
Jυ̇ +Mr (u, v, γ, υ) = M̄ (τ)

(4)

and application of known algorithms for solving the Cauchy task. Numerical integration
of first order differential equations solved with respect to derivatives, can be performed by
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many well-known methods, which by the nature of the techniques used at each integration
step, were divided into one-step and multi-steps. The most widely used in practice the
Runge-Kutta method, belonging to the group of single-step, and methods of prediction
-correction, which are multi-steps.

Methods of prediction-correction are based on the use of finite difference expressions
of the form

un =
k

∑

i=1

αiun−1 +∆t
k

∑

i=0

βifn−i,

where k – the order of method; ∆t – the time step; n – the number of time step; αi and
βi – constant coefficients determined from the condition and accuracy of the method.

In the explicit Runge-Kutta methods the system of equations (4), written in the form

U̇n = F (Un, τn) ,

and solved by using the following basic formula:

Un+1 = Un +∆Un.

Here U = [u, u̇, γ, γ̇]T . A method for calculating the function increment ∆Un depends on
the order of the method.

In the explicit Runge-Kutta methods and prediction-correction for sustainability the
next relation must satisfy:

∆tmax · |Re λi| ≤ C, C = const,

where Re λi – the real parts of the eigenvalues λi of the Jacobi matrix formed at each step
of the integration from the right-hand side of (4).

These methods have worked well for solving the dynamics of rapidly rotating rotors
on bearings with intermediate elements in the form of rotating and non-rotating floating
bushings. The result of the solving, in addition to the trajectory of the journal center and
the spatial position of the axis of rotation of the journal in a bearing, is a set of output
parameters characterizing resistance, wear resistance, the heat-load, fatigue life support,
etc [5, 6].

The experience with these methods has shown that for some systems, known as "rigid"
mentioned methods are not applicable [7].

Systems in the range J ⊂ [a, b] can be considered as "rigid" system, if for τ ∈ J

Re (λk) < 0, k = 1, 2, ...S;
S (τ) = maxRe (−λk)/minRe (−λk) >> 1, k = 1, 2, ...S;

}

(5)

where Re λk – the real part of the eigen values λk of the Jacobi matrix of the system, which
is obtained by linearization of a nonlinear system of differential equations at a time τ .

Conditions (5) indicate that for the "rigid" system the wide scatter of the eigen values
of the Jacobi matrix is typical. In some test problems discussed by the authors, the
difference in eigen values of the Jacobi matrix of the linearized system (4) was several
orders of magnitude. In such cases, the classical methods of integration of the system (4)
proved to be unsuitable because of the need to reduce the next step of integration in some
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parts of the journal center trajectory to very small values. In this case, on the interval of
the local stiffness of the system (4) the number of integration steps is comparable to the
ratio S(τ).

The phenomenon of "rigidity" effected on the speed of the transition process in
the journal-bearing system. This is especially important in problems of stability of an
unbalanced rotor, as well as in the analysis of the dynamics of the bearing of piston
engines, which are characterized by rapid changes in vector-valued function f(τ).

The range of variation of the integration step is greatly extended by using special
techniques, focused on solving the "rigid" systems of equations, for which large differences
in the eigen values of the Jacobi matrix are characterized. These include local linearization
method [8], Fowler-Wharton [9], implicit one-step and multi-step methods, and others.

2. Numerical methods for solving rigid systems

For "rigid" systems because of the very small time step and the instability of
traditional methods such as Runge-Kutta method, one of the way of solution this problem
was the use the implicit numerical methods. The main methods for solving the equations
of motion of the journal on the lubricating layer are considered below. They are designed
with reference to problems of nonlinear dynamics bearings piston- and rotary machines.

In the method of Fowler-Wharton the displacement vector at a time τn+1 = τn + ∆τ
determined as

un+1 = un +∆τ u̇n−1 +∆τc1d1,

where

u̇n−1 = (un − un−1) /∆τ1; c1 =

{ (

eλ∆τ − 1
)

/λ∆τ, λ < 0
1 + λ∆τ/2, λ ≥ 0

; λ =

{

ün/d1, d1 6= 0
0, d1 = 0

;

d1 = u̇n − u̇n−1; ün = u̇p − u̇n/∆τ ;

u̇p = F [τn +∆τ, up (τn +∆τ)] ; up (τ +∆τ) = un +∆τ u̇n;

∆τ ≤ ∆τ/4; ∆τ = τn+1 − τn; ∆τ1 = τn − τn−1.

At the beginning we take into account un = un−1. The value ∆τ is controlled by
calculating the local integration errors for each of variables.

En+1 = |∆t [u̇n+1 − (u̇n−1 + c0d1)] | ,

where

c0 =

{

eλ∆τ ,
1 + λ∆τ,

if
if

λ < 0;
λ ≥ 0.

In the process of integrating the motion equations of the journal to adjust the time
step we used following algorithm.

Upper and lower limits for the admissible errors were calculated:

Au,n+1 = a1 + a2 |un+1| , Bu,n+1 = b1 + b2 |un+1| ,

where coefficients were determined by numerical experiments a1 = 0.0005; a2 = 0.0075;
b1 = 0.00001, b2 = 0.00005.

Then the following four situations were analyzed:
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a) if for some values u the relation Eu,n+1/Au,n+1 > 1, 5 is true, the integration step was
divided in half, and the result of integration is not taken;

b) if Eu,n+1/Au,n+1 > 0, 75 for some values u and Eu,n+1/Au,n+1 ≤ 1, 5 for all u, the
value of the current integration step was taken, but for subsequent calculations the
step was divided in half;

c) if Eu,n+1/Au,n+1 ≤ 0, 75 and Eu,n+1/Bu,n+1 ≥ 1 for all u, step has’t changed;

d) if Eu,n+1/Au,n+1 ≤ 0, 75 for all u and Eu,n+1/Bu,n+1 < 1 at least one u, integration
step is doubled.

3. The modified method of the linear acceleration (Wilson

method)

In [4] the method of local linearization of the system of equations (1) considered
in relation to tasks of rotors stability. Its application in practice has shown that it does
not satisfy the requirements of universality and, in many cases, when in the left side of
equation (1) the coefficient of the highest derivative is small, does not provide a solution. In
connection with this, the Wilson’s method [8] seems to be preferable. Its can be regarded
as a modified method of local linearization (linear acceleration method). The essence of
the method, we consider on the example of the solution of the first equation of system (1).

Linearize the equation on a short time interval

m∆ü (ϑ∆τ) + C (τ)∆u̇ (ϑ∆τ) +K (τ)∆u (ϑ∆τ) = ∆f (ϑ∆τ) . (6)

Here ∆u =

[

∆x
∆y

]

– the vector of increments; C (τ) = −
kF
h0ω2

0

∂ R̄

∂ u̇
– the damping matrix;

K (τ) = −
kF
h0ω2

0

∂ R̄

∂ u
– the stiffness matrix; R̄ – dimensionless reaction of the lubricant

layer;

∂ R̄

∂ u̇
=









∂ R̄x

∂ ẋ

∂ R̄x

∂ ẏ
∂ R̄y

∂ ẋ

∂ R̄y

∂ ẏ









;
∂ R̄

∂ u
=









∂ R̄x

∂x

∂ R̄x

∂y
∂ R̄y

∂x

∂ R̄y

∂y









Wilson’s method assumes a linear change in acceleration in the extended range τ ,
τ + ϑ∆τ , where ϑ ≥ 1. If ϑ = 1, this is the usual version of the method of linear
acceleration (local linearization).

Taking a linear dependence of the components of the acceleration vector

ü (τ +∆τ) = ü (τ) +
∆τ

ϑ∆τ
(ü (τ + ϑ∆τ) − ü (τ)) . (7)

and integrating, we obtain

u̇ (τ +∆τ) = u̇ (τ) + ü (τ)∆τ +
∆τ 2

2ϑ∆τ
(ü (τ + ϑ∆τ)− ü (τ)) ; (8)

u (τ +∆τ) = u (τ) + u̇ (τ)∆τ +
∆τ 2

2
ü (τ) +

∆τ 3

6ϑ∆τ
(ü (τ + ϑ∆τ)− ü (τ)) . (9)
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Using an increment ∆u as the main variable, taking into account the equations (8)
and (9) we find for the end of the interval:

∆ü (ϑ∆τ) =
6

ϑ2∆τ 2
∆u (ϑ∆τ)−

6

ϑ∆τ
u̇ (τ)− 3ü (τ) ; (10)

∆u̇ (ϑ∆τ) =
3

ϑ∆τ
∆u (ϑ∆τ) − 3u̇ (τ)−

ϑ∆τ

2
ü (τ) . (11)

After substituting the expressions for ∆ü and ∆u̇ in equation (6) we get

[

6m

ϑ2∆τ 2
+ C (τ)

3

ϑ∆τ
+K (τ)

]

∆u (ϑ∆τ) = m

[

6

ϑ∆τ
u̇ (τ) + 3ü (τ)

]

+

+C (τ)

[

3u̇ (τ) +
ϑT

2
ü (τ)

]

+∆f (ϑ∆τ) .
(12)

For infinitesimal dynamic movements of the journal center near the position
corresponding to the start time interval τ ∆x = d (χ cos δ) ; ∆y = d (χ sin δ) (χ – relative
eccentricity; δ – angle determining the position of the center line)

∆ẋ = ∆χ̇ cos δ − χ∆δ̇ sin δ; ∆ẏ = ∆χ̇ sin δ + χ∆δ̇ cos δ,

therefore,
∆χ̇ = ∆ẋ cos δ +∆ẏ sin δ; ∆δ̇χ = ∆ẏ cos δ −∆ẋ sin δ.

We have identified Φ =

[

∆χ
∆δ

]

, and find Φ̇ =

[

∆χ̇

∆δ̇

]

=





cos δ sin δ

−
sin δ

χ

cos δ

χ



 ·

[

∆ẋ
∆ẏ

]

,

then

K (τ) = −
kF
h0ω2

0

∂ R̄

∂Φ





cos δ sin δ

−
sin δ

χ

cos δ

χ



 , C (τ) = −
kF
h0ω2

0

∂ R̄

∂ Φ̇





cos δ sin δ

−
sin δ

χ

cos δ

χ



 , (13)

where

∂ R̄

∂ Φ
=









∂ R̄x

∂ χ

∂ R̄x

∂ δ
∂ R̄y

∂ χ

∂ R̄y

∂ δ









∂ R̄

∂ Φ̇
= 2







∂ R̄x

∂ E
−
∂ R̄x

∂ G
∂ R̄y

∂ E
−
∂ R̄y

∂ G






.

Multiplying the matrix in (13), we obtain

K (τ) =
1

h0ω
2
0

au =
1

h0ω
2
0

[

axx axy
ayx ayy

]

; C (τ) =
1

h0ω
2
0

bu =
1

h0ω
2
0

[

bxx bxy
byx byy

]

,

where rigidity au and damping bu coefficients are determined by the equations

axx = −kF

(

∂ R̄x

∂χ
cos δ −

1

χ

∂R̄x

∂δ
sin δ

)

; axy = −kF

(

∂ R̄x

∂χ
sin δ +

1

χ

∂R̄x

∂δ
cos δ

)

;

ayx = −kF

(

∂ R̄y

∂χ
cos δ −

1

χ

∂R̄y

∂δ
sin δ

)

; ayy = −kF

(

∂ R̄y

∂χ
sin δ +

1

χ

∂R̄y

∂δ
cos δ

)

;

16 Journal of Computational and Engineering Mathematics



bxx = −2kF

(

∂ R̄x

∂E
cos δ +

1

χ

∂R̄x

∂G
sin δ

)

; bxy = −2kF

(

∂ R̄x

∂E
sin δ −

1

χ

∂R̄x

∂G
cos δ

)

;

byx = −2kF

(

∂ R̄y

∂E
cos δ +

1

χ

∂R̄y

∂G
sin δ

)

; byy = −2kF

(

∂ R̄y

∂E
sin δ −

1

χ

∂R̄y

∂G
cos δ

)

,

where R̄x = − (W cos δ − V sin δ); R̄y = − (W sin δ + V cos δ).
Solving the system (3), we obtain

[

6mh0ω
2
0

ϑ2∆τ 2
+

3bxx
ϑ∆τ

+ axx

]

∆x+

[

3bxy
ϑ∆τ

+ axx

]

∆y =

= h0ω
2
0∆fx(ϑ∆τ) + 3mh0ω

2
0

[

2

ϑ∆τ
ẋ(τ) + ẍ(τ)

]

+

+bxx

[

3ẋ(τ) +
ϑ∆τ

2
ẍ(τ)

]

+ bxy

[

3ẏ(τ) +
ϑ∆τ

2
ÿ(τ)

]

;

[

3byx
ϑ∆τ

+ ayx

]

∆x+

[

6mh0ω
2
0

ϑ2∆τ 2
+

3byy
ϑ∆τ

+ ayy

]

∆y =

= h0ω
2
0∆fy(ϑ∆τ) + 3mh0ω

2
0

[

2

ϑ∆τ
ẏ(τ) + ÿ(τ)

]

+

+byx

[

3ẋ(τ) +
ϑ∆τ

2
ẍ(τ)

]

+ byy

[

3ẏ(τ) +
ϑ∆τ

2
ÿ(τ)

]

.

Then ∆x and ∆y determined from the relations

∆x =
C1B2 − C2B1

A1B2 − A2B1

; ∆y =
C2A1 − C1A2

A1B2 − A2B1

, (14)

where

A1 =
6mh0ω

2
0

ϑ2∆τ 2
+

3bxx
ϑ∆τ

+ axx; A2 =
3byx
ϑ∆τ

+ ayx;

B1 =
3bxy
ϑ∆τ

+ axx; B2 =
6mh0ω

2
0

ϑ2∆τ 2
+

3byy
ϑ∆τ

+ ayy;

C1 = h0ω
2
0∆fx(ϑ∆τ) + 3mh0ω

2
0

[

2

ϑ∆τ
ẋ(τ) + ẍ(τ)

]

+

+bxx

[

3ẋ(τ) +
ϑ∆τ

2
ẍ(τ)

]

+ bxy

[

3ẏ(τ) +
ϑ∆τ

2
ÿ(τ)

]

;

C2 = h0ω
2
0∆fy(ϑ∆τ) + 3mh0ω

2
0

[

2

ϑ∆τ
ẏ(τ) + ÿ(τ)

]

+

+byx

[

3ẋ(τ) +
ϑ∆τ

2
ẍ(τ)

]

+ byy

[

3ẏ(τ) +
ϑ∆τ

2
ÿ(τ)

]

.

Accumulation of errors can be avoided as follows. Since the calculations are done using
approximate formulas, then at the time τ instead of the expression

mü(τ) +R (u(τ), u̇(τ)) = f(τ) (15)
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the exact equality performed

mü(τ) +R (u(τ), u̇(τ)) = f(τ) +Ne(τ), (16)

where Ne(τ) – error, defined by discarding terms of second and higher order of smallness.
Given that at time τ + ϑ∆τ

mü(τ + ϑ∆τ) +R (u(τ + ϑ∆τ), u̇(τ + ϑ∆τ)) = f(τ + ϑ∆τ), (17)

equation (12) can be written as

m∆ü (ϑ∆τ) +
∂R

∂u
∆u (ϑ∆τ) +

∂R

∂ u̇
∆u (ϑ∆τ) = ∆f (ϑ∆τ)−Ne (τ) . (18)

Substituting (10), (11) for ∆u̇ and ∆ü in (8) find the equation
[

6m

ϑ2∆τ 2
+ C [τ ]

3

ϑ∆τ
+K (τ)

]

·∆u (ϑ∆τ) = m

[

6

ϑ∆τ
u̇ (τ) + 3ü (τ)

]

+

+C (τ)

[

3u̇ (τ) +
ϑ∆τ

2
ü (τ)

]

+∆f (ϑ∆τ)−Ne (τ) ,
(19)

which is used instead of the equation (10).
Algorithm implementation of the Wilson’s method is as follows.

1. The initial velocity u̇ (τ) and displacement u (τ) are given by the initial conditions
of the problem, or are known from the previous integration steps.

2. With these values and using a right differences the partial derivatives are calculated.
For Example,

∂ R̄x

∂χ
=
R̄x (χ+∆χ, δ, E,G)− R̄x (χ, δ, E,G)

∆χ
,

where ∆χ (∆δ,∆E,∆G) is advisable to take equal 0.0001.

3. Residuals are calculated for each variable

Ne (τ) = mü+ P (u, u̇)− f (τ) .

4. The increment of function is calculated f (τ)

∆f (τ) = f (τ + ϑ∆τ) − f (τ)

and the right-hand side of equation (18):

∆f (τ)−Ne (τ) .

5. By the formulas (14), (10), (11) at time τ = τ + ϑ∆τ we define the increments of
coordinate of the journal center, velocities and accelerations

∆x (ϑ∆τ) ,∆y (ϑ∆τ) ,∆ẋ (ϑ∆τ) ,∆ẏ (ϑ∆τ) ,∆ẍ (ϑ∆τ) ,∆ÿ (ϑ∆τ) .

Then the result is recalculated for the interval ∆τ by the formulas (7), (8), (9):

∆ü (∆τ) =
1

ϑ
∆ü (ϑ∆τ) ; ∆u̇ (∆τ) = ∆τ ü (τ) +

∆τ

2ϑ
∆ü (ϑ∆τ) ; (20)

∆u (∆τ) = ∆τ u̇ (τ) +
∆τ 2

2
ü (τ) +

∆τ 2

6ϑ
∆u (ϑ∆τ) .
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6. Accelerations, velocities and coordinates of the journal center in the end of the time
interval ∆τ are determined as:

ü (τ +∆τ) = ü (τ) + ∆ü (∆τ) ;

u̇ (τ +∆τ) = u̇ (τ) + ∆u̇ (∆τ) ;

u (τ +∆τ) = u (τ) + ∆u (∆τ) .

Optimum performance of stability and accuracy are achieved by varying the
parameter ϑ. The authors of [10] showed that the unconditional stability of the method is
achieved by ϑ = 1.37.

For tasks of nonlinear oscillations of the journal on the lubricating layer of the bearing
the parameter ϑ can be changed, as shown by our study, from 1.0 to 1.8. And at ϑ = 1.37
the integration time is the smallest. The correction by the magnitude of the discrepancy
Ne (τ) is similar changes the solution step on time. Therefore, the implemented algorithm,
the value is taken to be 1.37, and the step of calculating adjusted to the minimum value
of the discrepancy:

if maxu |Ne (τ)| > ε1 , ∆τ = ∆τ · 0.75 , if maxu |Ne (τ)| < ε2 , ∆τ = ∆τ · 1.5,
where ε1 = 0.0001 and ε2 = 0.00001 are defined by numerical experiments.
These algorithms have been successfully used in solving tasks of the dynamics of

heavy-loaded units of the internal combustion engine [11, 12].
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