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In this work we researched domain splitting of self-adjoint elliptic pseudodifferential
operator. In particular the Laplace — Beltrami operator in the space of smooth differential
k-forms defined on a smooth compact oriented Riemannian manifold without boundary be
such operator. This result can be used in model with Sobolev type equations.
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Introduction

Now a days various mathematical models are widely investigated on the basis of
Sobolev type equations of the form:

Li = Mu, (1)

with an irreversible operator L at the derivative [1]. Note, that researches are conducted as
for abstract equations, as for particular applications of this kind [2]. There are qualitative
and numerical analysis of solutions of these equations in various cases. We are interested
in one aspect of the solvability of the Cauchy problem

u(0) = wuyg (2)

in the space of differential k-forms defined on a Riemannian manifold without boundary
for equations of the form (1). That is the splitting of the domain of the definition of the
operator L € L(4,§) into a direct sum of subspaces

U=s0eu, (3)

requiring in the relativity operators theory.

In the work [5] the special case of differential operators in the space of k-forms on the
sphere was studied.

In the introduction we have formulated our problem. Then we have described its
relationship with the mathematical models of Sobolev type. In the first part (preliminary
information) we have given the definition of the space of differential k-forms on a manifold
without boundary and have considered elements of Sviridyuk theory of (L, p)-bounded
operators [1| and the theorem of Hodge-Kodaira about the splitting of such spaces |3].
The second part (main results) has presented the main result of the splitting of the domain
of the definition elliptic self-adjoint operator and comments.

60 Journal of Computational and Engineering Mathematics



COMPUTATIONAL MATHEMATICS

1. Preliminary Information

Let U and F be Banach spaces and operators L, M € L (U, F) are linear and bounded.
Consider the L-resolvent of operator M set p* (M) = {p e C: (uL — M) e L(F, U)}
and L-spectrum o% (M) = C\pX (M) of an operator M.

The operator function (uL — M )" will be called L-resolvent of an operator M, and
the operator function RL (M) = (uL — M)™' L and L% (M) = L (uL — M)™", the right
and the left L-resolvent of operator M, respectively.

Definition 1. Operator M is called bounded with respect to operator L (shorter, (L,o)-
bounded) whenever

Ja € Ry Vu e C: (Ju| >a) = (u € ph(M)).

Operator M is called (L, p)-bounded whenever it is (L, o) - bounded and the point oo — is
a pole of order p € {0} |UN L-resolvent of an operator M.

Let pl (M) # ©@. An Equation (1) is reduced to a couple of the equivalent equations
RE(M)u = (0L — M)™" Mu, (4)

Ly (M) f =M (3L —M)" [, (5)

where § € p® (M). Both equations will be considered as specific interpretations of the
equation

Av = Bu, (6)

where the operators A € L(WW), and W — some Banach space. Solution of the equation
(6) is a vector function v € C* (R, W) satisfying the equation (6).

Definition 2. The mapping V € C* (R, L (W)) is called the resolving analytical group
of the equation (6), if

(i) VVE =Vt for all s, t € R;

(ii) for every vo €W wvector-valued function v(t)=V"'vy is the solution of the equation (6).

Theorem 1. [1| Let an operator M is (L,p) - bounded. Then there are the resolving
analytical groups of equations (4) and (5), represented by integrals of Dunford — Taylor

1
Ut = R} (M)etd

b
Ft = LL M) ettd

where the contour T bounds area containing the o* (M).
Groups (7), (8) have units
1
F(Mydp=p, F°= / LY (M) dp = Q.
T 2mi / B, s ’ 2mi (M)dp =@ ()

Let the kernels and images of these semigroups ker P = 4% imP = {!, kerQ = F°,
imQ = §*.
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Let €2, be a smooth compact oriented Riemannian manifold without boundary.
Spaces of smooth differential k-forms defined on the manifold 2, we denote as the
Hy = Hp(Q,), k = 0,1,...,n. In the spaces Hj the Laplace — Beltrami operator
A = db + 6d was defined, where d — an operator of an exterior differentiation of k-forms,
0= (—1)"”‘”1)Jrl x d+ — an adjoint operator to an operator d, and * — Hodge operator. Let
H.,=dé[Hy|, Hys = 0d[Hy|, Hoa =ker A, k=0,1,...,n.

The scalar product in the space Hy, k = 0,1, ...,n defined by the formula

(€)= /m e, where £,1 € H, (10)

and the corresponding norm is denoted || - ||o. The replenishment of the space Hy in this

norm is denoted $)?. The replenishment lineals H,,, H,;, H,A on it will be denoted by

0 0 0
ﬁkd ﬁké g)kA'

Theorem 2. 3] (Hodge — Kodaira) For every k = 0,1,...,n there is a splitting of the
space $Y in the orthogonal direct sum

Dp = N0a @ s S Ha, (11)

moreover the dimension of the space $3 5 is finite.

Enter in accordance with the following formulas

(57 77)1 = (_A§7 77)0 + (ga 77)0 7 (57 77)2 = (A§7 An)o + (57 77)1 I (12)
two more scalar products in the space Hy, kK = 0,1,...,n, and denote the relevant rules
| - |l and || - ||2, respectively. The replenishment of the space Hj, by these rules denote
9 Hi-

Consider an orthogonal projector Pa, ker PA = $), in $?. It will be an orthogonal
projector and in $; $?7, moreover by virtue of the finite their kernels coincide and
552A - 551ch = fJiA- N

Let the space HL = (ﬁfm) , 1 =0,1,2 ( that is an orthogonal adjoint to harmonic

k-forms). The spaces Hj,i = 1,2 — Banach, moreover by virtue of by the continuity and
density of attachments

H) c H; c HZ,
and the finiteness of the rank of the operator Pya and k£ = 0,1,...,n we have the following

Corollary 1. [4] For every k = 0,1,...,n there are splitting spaces

Hj = HilA © Hya, (13)
where HLIA =I- PkAHkA7 1= 1,2
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2. Main Results

Let €2, is a smooth compact oriented Riemannian manifold without boundary. Using
the preliminary information, we define

U= ¢ H2. 5= & HO. 14
kejo oS k@jo Kk (14)

The spaces U and § are real vector bundles of differential k-forms on a manifold €2,,.
Let U =C> (), F =C>™(F) vector space of smooth sections of i, §, respectively.

Definition 3. An linear differential operator L of order l, from U to F' - is a linear map
from U to F. Operator L is called elliptic if it is elliptical locally (in each trivialization).

Theorem 3. Let L be an linear elliptic self-adjoint differential operator. Then the spaces
U and F decompose into direct sums

F =imL & ker L*, (15)

U =imL* @ ker L. (16)
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PACHIEIIJIEHUE OBJIACTU OIIPE/IEJIEHWN
QJIJINIITUYECKOI'O CAMOCOIIPA>KEHHOTI'O
IICEBAO/INP®PEPEHIIMAJIBHOI'O OITEPATOPA

. E. Illagpparos

B pabore mcciemoBano paciieiieHne OOJacTH OMPEeIeTeHNsT TANTHIECKOTO CaMO-
COTIPSTXKEHHBIX MCeBIOAN(MPEPEHITNANBLHOTO oneparopa. B dacrHocTu omeparop Jlamnaca
— Benprpamu, B npocrpancree rmaakux auddepeHnua bHbX k-hopM, OnpereseHHbIX Ha
[JIAJKOM KOMIAKTHOM OPUEHTHPOBAHHOM PUMaHOBOM MHOrO00Opasuu 6e3 Kpas OTHOCHUTCSA K
TaKOBBIM. JIaHHBII pe3yabTraT MOXKHO KHCIOJIb30BATh B TEOPHUH MOJIEIEH CODOIEBCKOrO THIIA.

Karuesne caosa: dudgepernyuaavroie k-gpopmos; pPUMaHO80 MHO2000pasue; modesu co-
BOAEBCKO20 MUNG; PAMGA CYMMAE NOONPOCTNPEHCTNG.
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