
N. N. Solovyova, S. A. Zagrebina, G. A. Sviridyuk

MSC 43A35, 47B37 DOI: 10.14529/jcem250405

START CONTROL OF POSITIVE SOLUTIONS TO SOBOLEV
TYPE EQUATIONS

N. N. Solovyova1, solovyovann@susu.ru,
S. A. Zagrebina1, zagrebinasa@susu.ru,
G. A. Sviridyuk1, sviridiukga@susu.ru
1South Ural State University, Chelyabinsk, Russian Federation

Using degenerate holomorphic groups of operators generated by linear continuous

operators L and M , a positive solution to a linear homogeneous Sobolev type equation

is obtained; necessary and sufficient conditions for the positivity of these groups are found.
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Introduction

Currently, mathematical modeling and computational experiment are integral parts
of general approaches to the study of various applied problems. This includes problems
posed by the currently relevant State Program of the Chelyabinsk Region "Environmental
Protection of the Chelyabinsk Region". Clean air, water, and soil are vital components of
our environment. Their proper maintenance is a factor contributing to the socio-economic
development of an industrial region [1, 2]. A significant number of works are devoted to
the study of pollution caused by industrial activity. To forecast possible pollution of the
aforementioned natural resources, as well as to create purification systems, mathematical
models of fluid filtration in soil (in fractured-porous media) and other models with
elements of hydrodynamic similarity theory are used, upon which a significant number of
mathematical methods used in the practice of hydro- and aerodynamic research are built.
The application of positive solutions is also relevant in the theory of optimal dynamic
measurements [3].

These models rely on non-negative and realistic aerodynamic, kinetic, physical,
geometric parameters and indicators, and their ratios. Solutions to problems obtained
using these models must also be positive [4, 5] to ensure adequacy of characteristics,
forecast accuracy, more stable and efficient computations, as well as their optimal
implementation. Here are examples of some of these indicators: velocities and directions
of flows of the substance under study, average velocity of substance movement, geometric
dimensions of the study area, geometric parameters of filters, their drag forces; forces
causing a pressure gradient in a medium; particle trajectories in a substance and their
kinematic characteristics; concentration of impurities in the atmosphere; source power,
etc.

1. Axiomatics and structure of the positive approach

A vector space B is called a Riesz space [4] if an order relation ≥ (satisfying the axioms
of reflexivity, transitivity, and antisymmetry) is defined on it, which is consistent with the
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vector structure, i.e.,

(x ≥ y) ⇒ (x+ z ≥ y + z) for all x, y, z ∈ B, and

(x ≥ y) ⇒ (αx ≥ αy) for all x, y ∈ B and α ∈ R+, where R+ = {0} ∪R+.

In turn, a Riesz space B is called a functional Riesz space if one can define elements
x+ = max{x, 0} and x− = min{−x, 0} for any x ∈ B such that x+, x− ∈ B. Further, a
functional Riesz space is called a normed functional Riesz space if a norm || · ||B is defined
on it such that

(|x| ≥ |y|) ⇒ (||x||B ≥ ||y||B) for all x, y ∈ B. (1)

Here |x| = x+ + x−. A complete normed functional Riesz space will be called a Banach
lattice.

Now let B be a Banach space. A convex set C ⊂ B is called a cone if C + C = C and
αC ⊂ C for all α ∈ R+. A cone C is called proper if C ∩ (−C) = {0}, and generating if
B = C−C, i.e., for all vectors x ∈ B there exist vectors y, z ∈ C such that x = y−z. If in a
Banach space B there exists a proper generating cone C, then an order relation ≥ can be
defined on B such that (x ≥ y) ⇔ (x−y ∈ C). The relation ≥, due to the properties of the
cone C, is consistent with the vector structure of the space B, and if for each vector x ∈ B
one can define a vector |x| ∈ B such that (1) holds, then the space B becomes a Banach
lattice. On the other hand, if B is a Banach lattice, then the set B+ = {x ∈ B : x ≥ 0}
will be a proper generating cone.

So, let B = (B, C) be a Banach lattice. Here C is a proper generating cone, and note
that, generally speaking, C may not coincide with the canonical cone B+. An operator
A ∈ L(B) is called positive if Ax ≥ 0 for any x ∈ C. A group of operators V • = {V t : t ∈ R}
acting on the space B is called positive if V tx ≥ 0 for any x ∈ C and t ∈ R. If V • is a
degenerate group, then its identity V 0 is a projector, which splits the space B into the
direct sum B = B0 ⊕ B1, where B0 = ker V 0 and B1 = imV 0. Since V t = V 0V tV 0,
then B0 = ker V t, and B1 = imV t. Hence, we can define ker V • = B0 and imV • = B1.
If a degenerate group V • is also positive, then B1 is a Banach lattice with the proper
generating cone C1 = {x ∈ C : V 0x = x} = B1 ∩ C. If it turns out that the space B0 is
also a Banach lattice with a generating cone C0 and an order relation �, then the cone
C∗ = C0 ⊕ C1 can generate a new Banach lattice structure on the space B with the order
relation ©≥, i.e.,

(x©≥y) ↔ (x0 � y0) ∧ (x1 ≥ y1).

In what follows, we consider the Banach space X (Y) as a Banach lattice X = (X , CX )
(Y = (Y , CY)), where CX (CY) are proper generating cones.

2. Positive solutions to a linear Sobolev type equation

Let X = (X , CX ) and Y = (Y , CY) be Banach lattices, where CX and CY are proper
generating cones [4]. Let the operators L ∈ L(X ,Y) and M ∈ Cl(X ,Y), and let the
operator M be positively (L, p)-bounded [4]. Consider the linear homogeneous Sobolev
type equation

Lẋ = Mx. (2)
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A vector-function x ∈ C1(R,X ) satisfying this equation is called a solution of equation
(2). A solution x = x(t) is called a solution of the Cauchy problem if, for some x0 ∈ X , it
satisfies the condition

x(0) = x0. (3)

A solution x = x(t) is called a solution of the Showalter–Sidorov problem if it satisfies
the condition

P (x(0)− x0) = 0. (4)

As is easy to verify, the vector-function x(t) = X tx0, where {X t : t ∈ R} is a degenerate
holomorphic group of operators of the form

X t =
1

2πi

∫

γ

RL
µ(M)eµtdµ, t ∈ R, (5)

Y t =
1

2πi

∫

γ

LL
µ(M)eµtdµ, t ∈ R, (6)

is a solution of equation (2) for any x0 ∈ X , and it is also a solution of problem (4) for any
x0 ∈ X . The question arises about the existence and uniqueness of a solution to problem
(2), (3) and the question about the uniqueness of a solution to problem (2), (4). To solve
these questions, recall that a set B ⊂ X is called the phase space of equation (2) if any
its solution x(t) ∈ B for each t ∈ R; and for any x0 ∈ B there exists a unique solution
x ∈ C1(R,X ) of problem (3) for equation (2). The following holds

Theorem 1. [4] Let the operator M be (L, p)-bounded, p ∈ {0} ∪N. Then the following
statements are equivalent.

(i) (µRL
µ(M))p+1 ((µLL

µ(M))p+1) is positive for all sufficiently large µ ∈ R+.
(ii) the degenerate holomorphic group X• (Y •) is positive.

Theorem 2. [4] Let the operator M be (L, p)- positively bounded, p ∈ {0} ∪N. Then
(i) the phase space of equation (2) is the subspace X 1;
(ii) for any x0 ∈ X there exists a unique solution x = x(t) of problem (2), (4), which,

moreover, has the form x(t) = X tx0.

Theorem 2 gives a complete answer to both questions posed. However, regarding the
uniqueness of the solution to problem (2), (4), the following should be said. By statement
(i) of this theorem, any solution of equation (2) lies in the space X 1 pointwise, i.e., x(t) ∈
X 1 for all t ∈ R. This means that if we represent an arbitrary initial vector x0 as x0 =
x0
0 + x1

0, where xk
0 ∈ X k, k = 0, 1 (according to G.A. Sviridyuk’s splitting theorem [6]),

then the solution x(t) = X tx0 of problem (2), (4) will also be the unique solution of this
problem with the initial condition v0 = v00 + x1

0, where the vector v00 ∈ X 0 is arbitrary.
This circumstance must be taken into account to correctly understand what follows.

Let now X = (X , CX ) be a Banach lattice and the group X• = {X t : t ∈ R} be positive.
As follows from the reasoning in Section 1, the phase space of equation (2) will also be a
Banach lattice, i.e., X 1 = (X 1, C1

X ), where the proper generating cone C1
X = X 1∩CX 6= {0}.

Therefore, the following holds

Corollary 1. [4] Let the conditions of Theorem 1 be satisfied, X be a Banach lattice,
and the degenerate holomorphic group X• be positive. Then for any x0 ∈ C1

X there exists
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a unique positive solution x = x(t) of problem (2), (3), which, moreover, has the form
x(t) = X tx0.

Let us proceed to consider positive solutions of problem (2), (4). Under the conditions
of Corollary 1, the solution x(t) = X tx0 of problem (2), (4) will be positive for any initial
vector x0 ∈ X such that Px0 ∈ C1

X .

Corollary 2. [4] Let the conditions of Corollary 1 be satisfied. Then for any x0 ∈ X such
that Px0 ∈ C1

X , there exists a unique positive solution x = x(t) of problem (2), (4), which,
moreover, has the form x(t) = X tx0.

3. Start control

When searching for start control for positive solutions of a Sobolev type equation, it
is necessary to find such control that ensures the initial condition of solution positivity.
Previously, issues of start control for studying Sobolev type equations were investigated,
including in the context of elasticity [7] and filtration.

Let L ∈ L(X ;Y) and M ∈ Cl(X ; Y ), with kerL 6= {0}. M is called positively bounded
if there exists a number µ ∈ C such that det(µL−M)−1 6= 0, and there exists p ∈ {0}∪N

such that for p = 0, the L-resolvent (µL − M)−1 of the operator M has a removable
singular point at ∞; otherwise, p is equal to the order of the pole at ∞. The terminology,
definitions, results, and axiomatics are described in more detail in [4, 5]. Let us introduce
a certain closed convex set Uad in the space of controls U.

The start control problem consists in finding, among the set of admissible pairs u ×
x(u) ∈ Uad ×X satisfying the system of equations

Lẋ(t) = Mx(t), (7)

the Showalter–Sidorov initial condition

[Rl
µ(M)]p+1(x(0)− u) = 0, (8)

such v × x(v) that

J(v) = min
u∈Uad

J(u), J(u) =
1∑

q=0

τ∫

0

||xq(u)− x0(t)||
2dt, (9)

where x(u) is a strong solution of (7),(8), Rl
µ(M) = (µL−M)−1L is the right L-resolvent

of M , τ ∈ R+, x(t) and x0(t) are the actual and planned observed values of the function,
respectively. The form of the functional (9) means having only one control goal – achieving
planned indicators; such a problem statement is called rigid start control. The following
holds

Theorem 3. Let the operator M be (L, p)-bounded, p ∈ {0} ∪N, x0 ∈ CX . Then there
exists a unique rigid start control of positive solutions of (7), (8).
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7. Sviridyuk G.A., Manakova N.A. Optimal control problem for the Hoff equation.
Siberian Journal of Industrial Mathematics, 2005, vol. 8, №2, pp. 144–151. (in Russian)

Natalya N. Solovyova, Senior Lecturer, Department of Mathematical and
Computer Modeling, South Ural State University (Chelyabinsk, Russian Federation),
solovyovann@susu.ru

Sophya A. Zagrebina, DSc (Math), Full Professor, Head of the Department
of Mathematical and Computer Modeling, South Ural State University (Chelyabinsk,
Russian Federation), zagrebinasa@susu.ru

Georgy A. Sviridyuk, DSc (Math), Full Professor, Department of Equations
of Mathematical Physics, South Ural State University (Chelyabinsk, Russian Federation),
sviridiukga@susu.ru

Received November 11, 2025

44 Journal of Computational and Engineering Mathematics



COMPUTATIONAL MATHEMATICS

УДК 17.923+517.925.54 DOI: 10.14529/jcem250405

СТАРТОВОЕ УПРАВЛЕНИЕ ПОЗИТИВНЫМИ
РЕШЕНИЯМИ УРАВНЕНИЙ СОБОЛЕВСКОГО ТИПА

Н.Н. Соловьева1, С.А. Загребина1, Г.А. Свиридюк1

1Южно-Уральский государственный университет, г. Челябинск,
Российская Федерация

При помощи вырожденных голоморфных групп операторов, порожденных линей-

ными и непрерывными операторами L и M , получено позитивное решение линейного

однородного уравнения соболевского типа, найдены необходимые и достаточные усло-

вия позитивности этих групп. Исследовано стартовое управление позитивными реше-

ниями задачи Шоуолтера–Сидорова.

Ключевые слова: задача стартового управления; позитивные решения; начальная

задача; абстрактное однородное уравнение соболевского типа.
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