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The article is devoted to a numerical investigation of the Boussinesq — Love
mathematical model. Algorithm for finding of the numerical solution to the Cauchy -
Dirichlet problem for the Boussinesq — Love equation modeling longitudinal oscillations
in a thin elastic rod with regard to transverse inertia was obtained on the basis of a phase
space method and by using a finite differences method. This problem can be reduced to the
Cauchy problem for the Sobolev type equation of the second order, which is not solvable for
arbitrary initial values. The constructed algorithm includes the additional check if initial
data belongs to the phase space. The algorithm is implemented as a program in Matlab.
The results of numerical experiments are obtained both in regular and degenerate cases.
The graphs of obtained solutions are presented in each case.
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method; Sobolev type equation; phase space; conditions of data consistency; system of
difference equations; the Thomas algorithm.

Introduction

Consider Boussinesq — Love equation

(A= A)uy = a(N — A)uy + BN — A)u, O<z<m t>0 (1)
with initial
u(z,0) = ¢(x), 0<z<m, @)
ut('raO) :1/)<.T), 0<I<7T,
and boundary
u(0,t) = u(m, t) =0, t>0 (3)
conditions. The functions ¢, are given, u = u(z,t) is unknown function, A = 8‘9—; is
one-dimensional Laplace operator. Mathematical model (1) — (3) describes longitudinal
oscillations in an elastic rod with inertia [1]. Problem (1) — (3) was studied by

Zamyshlyaeva A.A. [2] and her students [3-5]. Algorithm of numerical solution of problem
(1) — (3) based on modified Galerkin method was constructed in [6].
Mathematical model (1) — (3) can be reduced to the Cauchy problem

u(0) =, u(0) =1 (4)
for operator-differential equation

If operator A is continuously inversible, then equation (5) is called non-degenerate
or regular. Otherwise, in particular when ker A # {0}, such equation is called a Sobolev
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type equation. It is well-known that the Cauchy problem for Sobolev type equation is
not solvable with arbitrary initial values. In our opinion, the most productive approach
to the study of these equations is the phase space method. Its foundations were laid by
G.A. Sviridyuk and T.G. Sukacheva [7] in the study of semilinear Sobolev type equations
of the first order.

Concerning (1) — (3) there were considered [6] three cases depending on parametres
A, N, N7 In the cases when A & o(A) and (A € 0(A)) A (A= N # N) the phase space of
equation (1) was constructed and this confirms results [2]. In the case (A € g(A))A(X # ),
that was eliminated in [2], we have the necessary conditions for the unique solvability of
(1) = (3) in the form of dependence of functions ¢(z) and ¢ (z), so it is shown that the
phase space in the sense of [2| doesn’t exist.

1. Approximate Solution of the Problem

In this investigation we present the approximate solution to (1) — (3) that is constructed
by using a finite differences method. Construct a net over the whole surface of the rectangle
(0,7) > (0,T)

[ — T L — T
aji:h-l’Z:O’N,h:N,tj:’T-j,]:O,M7T:M
and define the grid function
uz}j = U(l’i,tj),i = O,N,j = O,M
Then " "
g (2, t5) = %wal’ (6)
the second derivative of t¢:
Ui 5 — QUZ"' + Ui, i
g (2, tj) = It 7_2] ’ 1; (7)
the second derivative of z:
Uy (.ZUZ‘, tj) - L hZJ L7 y (8)

i=2 N _1,j=2M—1.
If we substitute (6) — (8) in to (1) and combine like terms, we get:

( 1 o )+ <)\+ 2 +oz)\’+ 20 -+
WL\ T T o 2/ T T T2 T g T o e

1 « 2 15}
e (s~ g ) T )t

2\ 4 28 2 A
(=T e TN ) e (T )
1 a A 2 aX 2

+ui+1’jfl(_72 - h? + 27 - h2> +ui’j71(§ + T2.h2 27 27 h2

)+

1 «
72 h? +27-h2>
where i =2, N — 1,57 = 2, M — 1. Futher, fix j and solve the resultant system of equations
for (j + 1)-th layer on ¢ by a Thomas algorithm.

i1 j1(— =0,
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2. Algorithm Description

Describe the algorithm in detail. There is one step for every block of algorithm.

Step 1. After the start of program execution it is necessary to input coefficients
AN N« B, functions p(x) and ¥ (x), length of segment for solvability and time interval
t € [0,7T], the number of ¢t and x partitions.

Step 2. Generate searching unknown approximate solution U in loop from 2 to M — 1
and in inner loop from 2 to N — 1 by the finite differences scheme.

Step 3. Conditional test if A belongs to Laplace operator spectrum, i.e. if A can be
represented as —k2.

If step 3 has a true value:

Step 4. Conditional test if A = \q.

If step 4 has a true value:

Step 5. Conditional test from [6] for initial conditions, i.e. if (ug, pr) = 0 and
(uo, ) = 0.

Futher, step 9.

If step 4 has a false value:

Step 6. Conditional test from [6] for initial conditions, i.e. if (ug, pr) =
where gy, is a characteristic equation root for Boussinesq - Love equation (1).

Futher, step 9.

If step & has a false value:

Step 7. In accordance with condition the program generates a message that there are
no solutions.

If step 6 has a false value:

Step 8. In accordance with condition the program generates a message that there are
no solutions.

If step & and step 6 have a true value and step 3 has a false value:

Step 9. Generate a system of linear equations in loop from 2 to M — 1.

Step 10. Resultant system is solved by a Thomas algorithm in unknown coefficients u;;.

Step 11. Resultant solution is displayed by a graph.

The block diagram of the program is shown on fig 1.

(o, i)/ toks

3. Experimental Examples

Example 1. Consider the mathematical model

(A= A)uy = (A — Nug + B(A = N'u,
u(z,0) = sin(z), u(z,0) = sin(z) + sin(2z),
u(0,t) = u(m,t) =0.

with parametres a = =1, = =1, A = 2, X = —1,\" = 3, the amount of steps for

x: N = 40, for t: M = 60. This mathematical model is non-degenerate, therefore the
solution exists. The graph of solution is shown on fig. 2.

Example 2. Consider the mathematical model
(A= A)uy = (A = Nug + B(A = N'u,

u(z,0) = sin(z), u(z,0) = sin(z) + sin(2z),
u(0,t) = u(m,t) =0.
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Start

Input coefficients
of equation (1),
M, N — the number
of ¢ and x partitions,

the functions ¢, v

Presentation of the equations in the
form of the finite differences scheme

(@, ) =0 yes

(v, o) =0

yes

(v, 0 = 1, o)

A 4

No solutions

!

Formulate a system of linear
algebraic equations

A Thomas algorithm for solution of
a system of linear algebraic equations

( A graph of resultant approximation )
v
( End )

Fig. 1. The block diagram of the program
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Fig. 2. The graph of problem solution from example 1

with parametres = —1,8 = —1, A = =2, X' = —1, \” = 3. This mathematical model is
non-degenerate, therefore the solution exists. The graph of solution is shown on fig. 3.
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Fig. 3. The graph of problem solution from example 2
Example 3. Consider the mathematical model

(A= A)uy = (A — Nug + B(A — N'u,

u(z,0) = sin(z), w(x,0) = sin(x) + sin(2z),
u(0,t) = u(m,t) =0.

with parametres o = —1,0 = =1, A = —4, X = —1, )" = 3. As A = Xy (it is coincide

with the second eigenvalue of Laplace operator), the solution doesn’t exist because the
76
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conditions of consistency|6]:

1 ™ s

= v oo = [ @) o)

Mk Jo 0

doesn’t hold. The program gives the message about non-existence of solution shown on

fig. 4.

HeT pemeHMi

fi>> |

Fig. 4. Message about non-existence of solution in example 3

Example 4. Consider the mathematical model

(A= A)uy = (A — Nug + B(A = N')u,

u(z,0) = sin(z), w(x,0) = sin(x) + sin(2z),

u(0,t) = u(m,t) = 0.
with parametres « = —1,0 = -1, A= =1, = =1, X" = 3. As A = X = \; (coincide with
the first eigenvalue of Laplace operator), then for existence of the solution it is necessary

that initial functions belong to the phase space of equation, i.e. the following conditions
must be satisfied [6]:

/Oﬂi/}(x) - op(z)dz = 0 and /07r () - on(x)dz = 0.

Obviously they is don’t hold. The program gives the message about non-existence of
solution shown on fig. 5.

HeT pemeHMit

Jfx >>|

Fig. 5. Message about non-existence of solution in example 4

Example 5. Consider the mathematical model

(A= A)uy = (A = Nug + B(A — N )u,

u(z,0) = sin(3z), w(x,0) = sin(2x) + sin(3z),

u(0,t) = u(m, t) =0,
with parametres a = —1,0 = -1, A= -1, = -1, X" = 3. As A = X = )y (coincide with
the first eigenvalue of Laplace operator), then for existence of the solution it is necessary

that initial functions belong to the phase space of equation, i.e. the following conditions
must be satisfied [6]:

/0 " 4(2) - pulw)ds = 0 and / ") - ez = 0

Obviously they hold. The graph of solution is shown on fig. 6.
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Fig. 6. The graph of problem solution from example 5
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YUCJIEHHOE UCCJIEJOBAHUNE OIHON’
MATEMATUYECKOY MOJIEJI COBOJIEBCKOTO TUTIA

A.A. Bamviwasesa, C.B. Cyposues

Crarhs MOCBSIIEHA YUCJIEHHOMY KUCCIEI0BAHUI0 MATEMATHIECKOH Momenn Byccurecka
— Jlasa. Ha ocrose meTona ¢pa30BOro mpoCTpaHCTBA U MPUMEHEHUS METO/Ia KOHEYHBIX Pa3-
HOCTEH MOCTPOEH AJITOPUTM HAXOXKIEHWST YHUCIEHHOrO pelenus 3aga4du Komm — Tupuxie
nis ypaBHenus Dyccunecka — JIsgBa, mMomenupyromeil mpoaobHble KOJIEOAHUA B TOHKOM
VIPYTOM CTEPXKHE C YUeTOM MOMepedHoil nHepnun. JlanHast 3a1a9a MOXKET OBITh PEIyIu-
poeana K 3amade Komum s ypaBHeHHs cODOJIEBCKOIO THUIIA BTOPOrO IOPSIKA, KOTOPas,
KaK M3BECTHO PA3peInMa He MPU BCEX HAYAJIBHBIX 3HAUEHUSX. Pa3paboTaHHbBIl aJropuTM
COZIEPKUT MPETBAPUTETBHYIO MPOBEPKY MPUHAIEKHOCTH HAYAIBHBIX JAHHBIX (DAa30BOMY
[IPOCTPAHCTBY. AJICOPUTM peajiM30BaH B Bhie mnporpaMmbl B cperne Matlab. IIpuseaennt
pPe3yIbTaThl BBIUUCIATENBHBIX IKCIEPUMEHTOB B PETYASPHOM ¥ BBIPOXKIEHHOM CJIydasX.
[Ipencrasmensl rpaduKu MOy IEHHBIX PENTEHU.

Karoueswie caosa: ypasnenue Byccunecxa — Jlasa; 3adawa Koww — Jupuxae; memod
KOHEWHBIL Pa3Hocmed; ypasHenue coboaesckoz0 muna; (Pasoeoe NPoCMpPaHcmeo; Ycio6us
COAACOBAHUA; CUCTNEME PAZHOCTNHHLE YPABHEHUT; MEMOJD NPOOHKU.
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