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The authors developed a numerical non-iterative method of �nding of the value

of eigenfunctions of perturbed self-adjoint operators, which was called the method of

regularized traces. It allows to �nd the value of eigenfunctions of perturbed discrete

operators, using the spectral characteristics of the unperturbed operator and the eigenvalues

of the perturbed operator. In contrast to the known methods, in the method of regularized

traces the value of eigenfunctions are found by the linear equations. It signi�cantly increases

the computational e�ciency. The di�culty of the method is to �nd sums of functional series

of "suspended" corrections of perturbation theory, which can be found only numerically.

The formulas, which are convenient to �nd "suspended" corrections such that one can

approximate the amount of these functional series by summing up of them, are presented

in the paper. However, if a norm of the perturbing operator is large, then the summation of

"suspended" corrections can be not e�ective. We obtain analytical formulas, which allow to

�nd the values of sums of functional series of "suspended" corrections of perturbation theory

in the discrete nodes without direct summation of its terms. Computational experiments

are performed. These experiments allowed to �nd the values of the eigenfunctions of the

perturbed one-dimensional Laplace operator. The experimental results showed the accuracy

and computational e�ciency of the developed method.

Keywords: method of regularized traces; perturbed operators; eigenvalues;

eigenfunctions; multiple spectrum; "suspended" corrections of perturbation theory.

Introduction

The problem of �nding of the eigenvalues and the eigenfunctions of the perturbed
self-adjoint operators is important for both applied mathematics and other �elds of basic
research. In this regard, the establishment of new and development of existing numerical
methods for solving of spectral problems generated by perturbation discrete operators, are
an actual problems of modern mathematical modeling of di�erent processes of nature.

A new method was developed in the works, which were written by S.I. Kadchenko,
together with academician V.A. Sadovnichii and professor V.V. Dubrovskii. This method
allows to calculate the �rst eigenvalues of perturbed self-adjoint operators and was called
the method of regularized traces (RT). Later, S.I. Kadchenko got very simple formulas
for calculating of eigenvalues of perturbation discrete operators and removed a number of
strong restrictions on the unperturbed and perturbing operators [1]. It greatly increased
the computational e�ectiveness and greatly expanded the class of operators to which the
method can be applied. S.I. Kadchenko and S.N. Kakushkin developed the ideas of the
method of regularized traces. As a result, a non-iterative method, which allows to �nd the
values of eigenfunctions of perturbed discrete operators in discrete nodes of the domain
of de�nition, was developed [2�4]. The main theorems, which are used in the construction
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of this method, are presented in this paper. Also formulas, which allow to calculate the
values of sums of functional series of "suspended" corrections of perturbation theory of
discrete operators, were obtained, and computational experiment was performed.

Let T be a discrete lower semibounded operator, and P be bounded operator, and
both are set in a separable Hilbert space H with domains of de�nition in D. Suppose that
the eigenvalues {λn}∞n=1 of operator T are known and are numbered in decreasing order
of their values. Also suppose that the orthonormal eigenfunctions {vn(x)}∞n=1 (x ∈ D),
corresponding to these eigenvalues, are known and form a basis in H. Let νn be algebraic
multiplicity of the eigenvalue λn. Denote a number of unequal to each other λn, lying inside

the circle Tn0 , having radius ρn0 =
|λn0+1 + λn0 |

2
and a centre at the origin of the complex

plane, by n0. Let {µn}∞n=1 be eigenvalues of the operator T + P , which are numbered
in not decreasing order of their real parts, and {un(x)}∞n=1 (x ∈ D) be corresponding
eigenfunctions.

The following theorem was obtained in paper [5].

Theorem 1. Let T be a discrete lower semibounded operator, and P be bounded operator,
and both are set in a separable Hilbert space H with domains of de�nition in D. If the

inequalities qn =
2∥P∥

|λn+νn − λn|
< 1 are hold for all n ∈ N, then m0 =

n0∑
n=1

νn eigenfunctions

of the operator T + P are the solutions of system of nonlinear equations

m0∑
j=1

µp
juj(x)uj(y) =

m0∑
j=1

λp
jvj(x)vj(y) +

t∑
k=1

α
(p)
k (m0, x, y) + φ

(p)
t (m0, x, y). (1)

Here

α
(p)
k (m0, x, y) =

(−1)k

2πi

∫
Tn0

λp[KT (x, zk, λ) ◦ Pzk ]
k ◦KT (zk, y, λ)dλ

are k-th corrections of perturbation theory to the "suspended" spectral function of the
operator T + P of integer order p;

φ
(p)
t (m0, x, y) =

(−1)t+1

2πi

∫
Tn0

λp[KT (x, zt+1, λ) ◦ Pzt+1 ]
t+1◦

◦KT+P (zt+1, y, λ)dλ;

operation "◦" is introduced by the rule

(K ◦ P ◦Q)(x, y, λ) =

∫
D

K(x, z, λ)PzQ(z, y, λ)dz; (2)

KT (x, y, λ) � kernel of the resolvent Rλ(T ) of operator T ; Tn0 � circle having radius ρn0 =
|λn0+1 + λn0 |

2
and centre at the origin of the complex plane.

It can be shown (using, for example, [6, chapter V, § 4, p. 331]), that |φ(p)
t (m0, x, y)| →

0 for m0 → ∞. Then the system of equations (1) becomes:

m0∑
j=1

µpuj(x)uj(y) =
m0∑
j=1

λpvj(x)vj(y) +
t∑

k=1

α
(p)
k (m0, x, y) + ε

(p)
t (m0, x, y), (3)
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where

ε
(p)
t (m0, x, y) =

∞∑
k=t+1

α
(p)
k (m0, x, y).

The system of equations (3) is the basis of a new non-iterative numerical method of �nding
of the values of the eigenfunctions uj(x) of perturbed operator T + P at the nodes of the
sampling.

1. The RT Method to Calculate the Values of Eigenfunctions
of Perturbed Discrete Operators

The di�culty of using of the system of equations (3) to calculate the values of
products of uj(x)uj(y) is to �nd sums of "suspended" corrections of perturbation theory
∞∑
k=1

α
(p)
k (m0, x, y), which can be �nd only numerically. The estimates of "suspended"

corrections of perturbation theory were obtained by analytical formulas.

Theorem 2. Let T be a discrete lower semibounded operator, and P be bounded operator,
and both are set in a separable Hilbert space H. If the inequalities qn < 1 are hold for all
n ∈ N, then for "suspended" corrections of perturbation theory α

(p)
m (m0, x, y) of operator

T + P the following estimates are true:

|α(p)
m (m0, x, y)| ≤

C2
0

2π
∥P∥ρp+1

n0
qm−1
n0

Sλ. (4)

Here Sλ = sup
λ∈Tn0

( ∞∑
k=1

1

|λ− λk|

)2

, |vi(x)| ≤ C0, ∀i = 1,∞.

The convergence of sums of Rayleigh � Schrodinger functional series
∞∑

m=1

α
(p)
m (m0, x, y)

is proved in paper [7] using (4). There the estimates of them were obtained.

Theorem 3. Let T be a discrete lower semibounded operator, and P be bounded operator,
and both are set in a separable Hilbert space H. If the inequalities qn < 1 are hold for all
n ∈ N, then for sum remainders of Rayleigh � Schrodinger functional series ε

(p)
t (m0, x, y)

of operator T + P for any t, p,m0 ∈ N the following estimates are true:

|ε(p)t (m0, x, y)| ≤
C2

0

2π
∥P∥ρp+1

n0
Sλ

qtn0

1− qn0

. (5)

Here Sλ = sup
λ∈Tn0

( ∞∑
k=1

1

|λ− λk|

)2

, |vi(x)| ≤ C0, i = 1,∞.

If the norm of the perturbing operator P is small, then it is enough to approach the

sum of functional series
∞∑
k=1

α
(p)
k (m0, x, y) by the �rst "suspended" corrections. The limiting

absolute errors of �nding sums of functional series
∞∑
k=1

α
(p)
k (m0, x, y) are evaluated by the

formulas (5). In the following theorem we obtain formulas for �nding the "suspended"

corrections of theory of perturbations α
(p)
k (m0, x, y) of discrete operators, such that one can
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�nd approximately the sum of Rayleigh � Schrodinger functional series
∞∑
k=1

α
(p)
k (m0, x, y)

by summing up them.

Theorem 4. Let T be a discrete lower semibounded operator, P be bounded operator, and
both are set in a separable Hilbert space H. Suppose the inequalities qn < 1 are true for all
n ∈ N. Then the "suspended" corrections of theory of perturbations α

(p)
k (m0, x, y) for any

natural k, p and m0 can be �nd by the formulas:

α
(p)
k (m0, x, y) = −

m0∑
n=1

∞∑
j1,...,jk+1=1

vj1(x)vjk+1
(y)×

×r
(p)
k (n, j1, ..., jk+1)

k∏
m=1

Vjmjm+1 ,

(6)

where

r
(p)
k (n, j1, ..., jk+1) =



0, ∀jm ̸= n,m = 1, k + 1;
1

k!
lim
λ→λn

dk

dλkλ
p, l = k + 1;

1

(l − 1)!
lim
λ→λn

dl−1

dλl−1

( λp

k−l+1∏
m=1

(λ− λjm)

)
, 0 < l ≤ k;

Vi,j = (Pvi, vj) � inner product; l � number of coincidences jm = n, m = 1, k + 1.

The main determinant of the system of equations (1) is a Vandermonde determinant,
and is di�erent from zero. Therefore one can �nd its solution, with respect to products of
uj(x)uj(y), by any appropriate method [5]. In the future, it is assumed that the eigenvalues
µn are found by new RS method, which was obtained by S.I. Kadchenko in papers [1, 9].

The technique of �nding the values of products of eigenfunctions uj(x)uj(y) of
operators T +P is presented in the following theorem. This technique uses linear formulas
of calculation and allows do not direct solve a system of nonlinear equations (3).

Theorem 5. Let T be a discrete lower semibounded operator, P be bounded operator,
and both are set in a separable Hilbert space H with domain of de�nition D. Suppose the
inequalities qn < 1 are true for all n ∈ N. Then the value of the product of eigenfunction
un(x) and its conjugate one un(y) for all values of the arguments x, y ∈ D, can be �nd by
the formulas:

un(x)un(y) =
1
µn

(
λnvn(x)vn(y)+

+
t∑

k=1

[α
(1)
k (n, x, y)− α

(1)
k (n− 1, x, y)]

)
+ ε̃

(1)
t (n, x, y),

(7)

where for ε̃
(1)
t (n, x, y) the estimates

|ε̃(1)t (n, x, y)| ≤ C2
0

2πµn

∥P∥Sλρ
2
n

qt

1− q
, ∀t ∈ N, n = 1,m0aretrue. (8)

Here Sλ = sup
λ∈Tn0

( ∞∑
k=1

1

|λ− λk|

)2

, |vi(x)| ≤ C0 ∀i = 1,∞, q = max
n≥1

qn.
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In general, the values of the eigenfunctions of a perturbed self-adjoint operator are
complex. The product of eigenfunction uj(x) (j = 1,m0) and its conjugate one uj(x) at
the same point x ∈ D is the module of values of eigenfunction uj(x). Therefore, one can
not to restore the value of eigenfunction uj(x) by one point using the equation (3). But if
we consider the equation (3) for di�erent points x and y, then it is possible to construct
an algorithm for calculating the values of eigenfunctions.

Let us illustrate this for the case where the eigenfunctions {un(x)}m0
n=1 of operator

T +P are functions of k variables: x = (x1, x2, ..., xk). We introduce the di�erence grid for
arguments x1, x2 ... xk with steps h1, h2 ... hk respectively. Denote the number of nodes of
the arguments x1, x2 ... xk by m1, m2 ... mk. Let us write the values x ∈ D at the nodes
of a sample in the form

xj1j2...jk = (x1j1
, x2j2

, ..., xkjk
), jl = 1,ml, l = 1, k.

Denote the right side (7) by φn(x, y). Then in the sampling nodes they take the form

un(xi1i2...ik)un(yj1j2...jk) = φn(xi1i2...ik , yj1j2...jk), (9)

where il, jl = 1,ml, l = 1, k.
Fix k − 1 coordinates of the sampling points and write the equation (9) for two node

points with coordinates xi1i2...ik , xi1i2...ik and xi1i2...ik+1, xi1i2...ik

un(xi1i2...ik+1)un(xi1i2...ik) = φn(xi1i2...ik+1, xi1i2...ik).

First step is to �nd up to the sign the values of real and imaginary parts of un(xi1i2...ik+1)
in the following form:

un(xi1i2...ik+1) = ± φn(xi1i2...ik+1xi1i2...ik)√
φn(xi1i2...ik , xi1i2...ik)

, ik = 1,mk − 1. (10)

Similarly, we �nd the value of the eigenfunction un in the rest of the node points.
Let us determine the sign within the grid for each value un(xi1i2...ik), which was founded

by the formulas (10).
Second step is to determine the sign of the founded values. To this end �x k−2 values

of coordinates of grid points (in the description of the algorithm, to be speci�c, �x the
�rst k − 2 index) and consider the product of the form

un(xi1i2...ik−1,ik)un(xi1i2...ik−1,ik+1) (11)

and
un(xi1i2...,ik−1,ik)un(xi1i2...,ik−1+1,ik). (12)

Obviously, if the real part of the product (11) is negative, then values of function
un have di�erent signs in the points xi1i2...,ik−1,ik and xi1i2...,ik−1,ik+1. Therefore, one can
determine the change in the signs of values of eigenfunctions by looking at the values of
the real part of the products at each node.

Introduce an auxiliary coe�cient ξ, which is equal 1 or −1. For all ik = 1 the value ξ is
set to be −1. We consider a sign of the product (12) at each sampling node and multiplie
a modules of values un(xi1i2...ik−1+1,ik) by ξ. If the real part of the product (12) is negative,
then the sign of the coe�cient ξ is reversed.
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We carry out the same operations for the product (12). To not change the already
changed in the previous step signs of values un(xi1i2...ik−1,ik) for ik−1 = 1 set ξ = 1.

After the end of the described operations, we consider the coordinates of the remaining
node points, increasing the values of �xed index i1, i2, ... ik−2 in turn by one.

RT method algorithm composed by the above-described scheme is presented in [8].
In the following theorem we obtain formulas that are convenient to �nd the sums of

functional series of "suspended" corrections of perturbation theory
∞∑
n=1

α
(p)
n (m0, x, y).

Theorem 6. Let T be a discrete lower semibounded operator, and P be bounded operator,
and both are set in a separable Hilbert space H with domain of de�nition in D. If the
functions {vn(x)}∞n=1 (x ∈ D) form an orthonormal basis in H, then the sums of functional
series of "suspended" perturbation theory corrections are foond by the formulas

∞∑
n=1

α
(p)
n (m0, x, y) =

m0∑
k=1

[
µp
kvm(x)vm(y)− λp

kvk(x)vk(y)−

−µp
k

m−1∑
j,i=1

{V imĂ
(k)
ij

det Ă
(k)

vm(x)vj(y) +
VimĂ

(k)
ij

det Ă(k)
vj(x)vm(y)

}
+

+µp
k

m−1∑
j1,j2,i1,i2=1

Vi1mV i2mĂ
(k)
i1j1

Ă
(k)
i2j2

det Ă(k)det Ă(k)
vj1(x)vj2(y)

]
+ δ

(p)
m (m0, x, y).

(13)

Here ∣∣∣δ(p)m (m0, x, y)
∣∣∣ ≤ m0∑

k=1

|µk|p
[
2|C| · |ε(m)

k |
m∑
j=1

|x(k)
j |+ |ε(m)

k |2
]
,

x
(k)
l =

 − 1

det Ă(k)

m−1∑
i=1

VimĂ
(k)
il , l = 1,m− 1;

1, l = m.

C = max
i=1,m

|vi(x)|, |δ(p)m (m0, x, y)|
m→∞−→ 0, ε

(m)
k = uk(x)−u

(m)
k (x), u

(m)
k (x) � approximation of

the eigenfunction uk(x), Ă
(k) = (aij)

m
i,j=1, m ∈ N, aij = Vij+(λi−µk)δij, Vij = (Pvi, vj), δij

� Kronecker symbol, Ă
(k)
ij � cofactors to the matrix entries Ă(k). The bar denotes complex

conjugation.

Proof.
Let the system of eigenfunctions {vn(x)}∞n=1 of operator T form an orthonormal basis

in H. Then the eigenfunctions uk(x) of operator T + P can be represented as

uk(x) =
∞∑
i=1

c
(k)
i vi(x). (14)

Let ε
(m)
k = uk(x)− u

(m)
k (x), where u

(m)
k (x) � m-th partial sum of functional series (14).

Transform entries of the matrix Am×m = (aij)
m
i,j=1, where aij =

(
(T + P )vi, vj

)
. By

the equations Tvn = λnvn and orthonormal system of functions {vn}∞n=1 one can write the
chain of equalities:

aij =
(
(T + P )vi, vj

)
= (Tvi, vj) + (Pvi, vj) =
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= (λivi, vj) + (Pvi, vj) = λi(vi, vj) + (Pvi, vj) = λiδij + Vij,

ãäå δij =

{
1, i = j,
0, i ̸= j

� Kronecker delta, i, j = 1,m, m ∈ N.

An eigenvector X
(m)
k = (x

(k)
1 , x

(k)
2 , . . . , x

(k)
m )T of matrix Am×m (k = 1,m),

corresponding to an eigenvalue µk, must satisfy the matrix equation:

(Am×m − µkE)X
(m)
k = 0

èëè 
(a11 − µk)x

(k)
1 + a12x

(k)
2 + ...+ a1mx

(k)
m = 0;

a21x
(k)
1 + (a22 − µk)x

(k)
2 + ...+ a2mx

(k)
m = 0;

...

am1x
(k)
1 + am2x

(k)
2 + ...+ (amm − µk)x

(k)
m = 0.

(15)

An eigenvector X
(m)
k is de�ned up to a factor. Therefore, let component x

(k)
m of vector

X
(m)
k be equal to unity. Discard the last of the equations of the system (15). Note that

the remaining equations are linearly independent. The resulting system of equations can
be presented in matrix form:

Ă(k)


x
(k)
1

x
(k)
2

...

x
(k)
m−1

 = B ∼

∼


a11 − µk a12 ... a1,m−1

a21 a22 − µk ... a2,m−1

...
am−1,1 am−1,2 ... am−1,m−1 − µk




x
(k)
1

x
(k)
2

...

x
(k)
m−1

 =


−a1m
−a2m
...

−am−1,m

 .

(16)

From the form of a matrix Am×m − µkE it is followed that aim = Vim, i = 1,m− 1.
We solve heterogeneous system of equations (16) by the inverse matrix method:

x
(k)
1

x
(k)
2

...

x
(k)
m−1

 = [Ă(k)]−1B =

=
1

det Ă(k)


Ă

(k)
11 Ă

(k)
21 ... Ă

(k)
m−1,1

Ă
(k)
12 Ă

(k)
22 ... Ă

(k)
m−1,2

...

Ă
(k)
1,m−1 Ă

(k)
2,m−1 ... Ă

(k)
m−1,m−1




−V1m

−V2m

...
−Vm−1,m

 =

=
1

det Ă(k)



−
m−1∑
i=1

VimĂ
(k)
i1

−
m−1∑
i=1

VimĂ
(k)
i2

...

−
m−1∑
i=1

VimĂ
(k)
i,m−1


.
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Here Ă
(k)
ij � algebraic complements of entries of the matrix Ă(k) (i, j = 1,m− 1).

Therefore, components of the vector X
(m)
k (k = 1,m) take the form

x
(k)
l =

 − 1

det Ă(k)

m−1∑
i=1

VimĂ
(k)
il , l = 1,m− 1;

1, l = m.
(17)

Solve a system of equations (3) on
∞∑
k=1

α
(p)
k (m0, x, y):

∞∑
k=1

α
(p)
k (m0, x, y) =

m0∑
k=1

[
µp
kuk(x)uk(y)− λp

kvk(x)vk(y)
]
=

=

m0∑
k=1

[
µp
k

(
u
(m)
k (x) + ε

(m)
k

)(
u
(m)
k (y) + ε

(m)
k

)
− λp

kvk(x)vk(y)
]
=

=

m0∑
k=1

{
µp
k

[
u
(m)
k (x)u

(m)
k (y) + ε

(m)
k u

(m)
k (x) + ε

(m)
k u

(m)
k (y) + ε

(m)
k ε

(m)
k

]
− λp

kvk(x)vk(y)
}
=

=

m0∑
k=1

[
µp
ku

(m)
k (x)u

(m)
k (y)− λp

kvk(x)vk(y)
]
+

m0∑
k=1

µp
k

[
ε
(m)
k u

(m)
k (x) + ε

(m)
k u

(m)
k (y) + ε

(m)
k ε

(m)
k

]
=

=

m0∑
k=1

[
µp
ku

(m)
k (x)u

(m)
k (y)− λp

kvk(x)vk(y)
]
+ δ(p)m (m0, x, y).

Decompose the components of the eigenvector X
(m)
k on the elements of an orthonormal

basis {vi(x)}mi=1 (x ∈ D), using formulas (17):

u
(m)
k (x) =

m∑
j=1

x
(k)
j vj(x) = vm(x)−

1

det Ă(k)

m−1∑
j=1

m−1∑
i=1

VimĂ
(k)
ij vj(x). (18)

Substitute formulas (18) in term for
∞∑
k=1

α
(p)
k (m0, x, y):

∞∑
k=1

α
(p)
k (m0, x, y) =

m0∑
k=1

[
µp
k

(
vm(x)−

1

det Ă(k)

m−1∑
j,i=1

VimĂ
(k)
ij vj(x)

)
×

×
(
vm(y)−

1

det Ă(k)

m−1∑
j,i=1

V imĂ
(k)
ij vj(y)

)
− λp

kvk(x)vk(y)
]
+ δ(p)m (m0, x, y) =

=

m0∑
k=1

[
µp
k

{
vm(x)vm(y)−

vm(x)

det Ă(k)

m−1∑
j,i=1

V imĂ
(k)
ij vj(y)−

vm(y)

det Ă(k)

m−1∑
j,i=1

VimĂ
(k)
ij vj(x)+

+
m−1∑

j1,j2,i1,i2=1

Vi1mV i2mĂ
(k)
i1j1

Ă
(k)
i2j2

det Ă(k)det Ă(k)
vj1(x)vj2(y)

}
− λp

kvk(x)vk(y)
]
+ δ(p)m (m0, x, y) =
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=

m0∑
k=1

[
µp
kvm(x)vm(y)−λp

kvk(x)vk(y)−µp
k

m−1∑
j,i=1

{V imĂ
(k)
ij

det Ă(k)
vm(x)vj(y)+

VimĂ
(k)
ij

det Ă(k)
vj(x)vm(y)

}
+

+µp
k

m−1∑
j1,j2,i1,i2=1

Vi1mV i2mĂ
(k)
i1j1

Ă
(k)
i2j2

det Ă(k)det Ă(k)
vj1(x)vj2(y)

]
+ δ(p)m (m0, x, y).

We estimate residues |δ(p)m (m0, x, y)|:

∣∣∣δ(p)m (m0, x, y)
∣∣∣ = ∣∣∣ m0∑

k=1

µp
k

[
ε
(m)
k u

(m)
k (x) + ε

(m)
k u

(m)
k (y) + ε

(m)
k ε

(m)
k

]∣∣∣ ≤
≤

m0∑
k=1

|µk|p
[
|Cε

(m)
k

m∑
j=1

x
(k)
j |+ |Cε

(m)
k

m∑
j=1

x
(k)
j |+ |ε(m)

k ε
(m)
k |

]
≤

≤
m0∑
k=1

|µk|p
[
2|C| · |ε(m)

k |
m∑
j=1

|x(k)
j |+ |ε(m)

k |2
]
.

Here C = max
i=1,m

|vi(x)|, and x
(k)
j are calculated by formulas (17).

The theorem is proved.

2

2. Computational Experiment

Let an operator T = −∆ be de�ned on the intervalD = [0, l]. As a perturbing operator
P we take the operator of multiplication by function p(x), de�ned on the interval D.

Consider the spectral problem

(T + P )u = µu, u ∈ DT .

DT =
{
u | u ∈ C2(D)

∩
C(D),∆u ∈ L2[D] : u

∣∣∣
0
= u

∣∣∣
l
= 0

}
.

It is well known that eigenvalues λn and eigenfunctions vn(x) of 1-dimensional Laplace
operator have the form:

λn =
(πn

l

)2

, vn(x) = sin(
√
λnx), x ∈ D.

Using formulas (7) and (13) the values of the �fth and sixth of the eigenfunctions of
the perturbed operator T +P were found. Tables 1 and 2 shows the values of the left and
right sides of the equation (T + P )un = µnun.

Table 3 shows the values of the residual ∥(T + P )un − µnun∥ for the �rst 10
eigenfunctions un for di�erent perturbing operator P .
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Table 1

The values (T + P )u5 and µ5u5 for a perturbed Laplace operator calculated for l = 1 and
p(x) = x2

xj (T + P )u5(xj) µ5u5(xj) |(T + P )u5(xj)− µ5u5(xj)|
∣∣∣ (T + P )u5(xj)− µ5u5(xj)

µ5u5(xj)

∣∣∣× 100%

0, 142857 272, 83735198766 273, 18110548326 0, 34375 0, 125834
0, 285714 340, 30702671043 340, 65126665861 0, 34424 0, 101053
0, 428571 151, 51348751144 151, 60407602055 0, 09059 0, 059753
0, 571429 151, 60114526407 151, 60407602055 0, 00293 0, 001933
0, 714286 340, 89792225718 340, 65126665861 0, 24666 0, 072407
0, 857143 273, 62712104909 273, 18110548325 0, 44602 0, 163267

Table 2

The values (T + P )u6 and µ6u6 for a perturbed Laplace operator calculated for l = 1 and

p(x) = sin
x

3
+ 1

xj (T + P )u6(xj) µ6u6(xj) |(T + P )u6(xj)− µ6u6(xj)|
∣∣∣ (T + P )u6(xj)− µ6u6(xj)

µ6u6(xj)

∣∣∣× 100%

0, 142857 218, 65994242645 218, 73206609730 0, 0721237 0, 0329735
0, 285714 394, 06411361875 394, 14156393128 0, 0774503 0, 0196504
0, 428571 491, 45509644760 491, 48649119961 0, 0313948 0, 0063877
0, 571429 491, 51983562427 491, 48649119961 0, 0333444 0, 0067844
0, 714286 394, 21974628211 394, 14156393128 0, 0781824 0, 0198361
0, 857143 218, 80367419419 218, 73206609730 0, 0716081 0, 0327378

Table 3

The values of the residual ∥(T + P )un − µnun∥ for a perturbed Laplace operator
calculated for l = 1, m = n

n

∥(T + P )un − µnun∥
for

p(x) = sin
x

3
+ 1

∥(T + P )un − µnun∥
for

p(x) = x2

1 0, 05933175453013449 0, 18486186946562712
2 0, 08722167298850077 0, 26982226399384459
3 0, 09141711850816346 0, 28555566913308841
4 0, 09283781270256698 0, 29106235945347709
5 0, 09348757188208574 0, 29361116877997433
6 0, 09383850642063260 0, 29499570545892765
7 0, 09404942961086482 0, 29583053561545063
8 0, 09418605494412680 0, 29637237064820354
9 0, 09427960126060587 0, 29674384907194357
10 0, 09434645249551450 0, 29700956347750404

Conclusion

The paper presents the main theorems, which are used to substantiate the method
of regularized traces of �nding of the values of eigenfunctions of perturbed self-adjoint
operators in the sample nodes. For the �rst time formulas, which allow to calculate the
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values of sums of functional series of "suspended" corrections of perturbation theory
of discrete operators, were obtained. Computational experiments are performed. These
experiments allowed to determine the values of the eigenfunctions of the perturbed
one-dimensional Laplace operator. The experimental results showed the accuracy and
computational e�ciency of the developed method.
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ÂÛ×ÈÑËÅÍÈÅ ÇÍÀ×ÅÍÈÉ ÑÎÁÑÒÂÅÍÍÛÕ ÔÓÍÊÖÈÉ
ÂÎÇÌÓÙÅÍÍÛÕ ÑÀÌÎÑÎÏÐßÆÅÍÍÛÕ ÎÏÅÐÀÒÎÐÎÂ
ÌÅÒÎÄÎÌ ÐÅÃÓËßÐÈÇÎÂÀÍÍÛÕ ÑËÅÄÎÂ

Ñ.Í. Êàêóøêèí, Ñ.È. Êàä÷åíêî

Àâòîðàìè ñòàòüè áûë ðàçðàáîòàí íåèòåðàöèîííûé ÷èñëåííûé ìåòîä íàõîæäåíèÿ

çíà÷åíèé ñîáñòâåííûõ ôóíêöèé âîçìóùåííûõ ñàìîñîïðÿæåííûõ îïåðàòîðîâ, íàçâàí-

íûé ìåòîäîì ðåãóëÿðèçîâàííûõ ñëåäîâ. Îí ïîçâîëÿåò íàéòè çíà÷åíèÿ ñîáñòâåííûõ

ôóíêöèé âîçìóùåííûõ äèñêðåòíûõ îïåðàòîðîâ, çíàÿ ñïåêòðàëüíûå õàðàêòåðèñòèêè

íåâîçìóùåííîãî îïåðàòîðà è ñîáñòâåííûå ÷èñëà âîçìóùåííîãî îïåðàòîðà. Â îòëè÷èè

îò èçâåñòíûõ ìåòîäîâ, â ìåòîäå ðåãóëÿðèçîâàííûõ ñëåäîâ çíà÷åíèÿ ñîáñòâåííûõ ôóíê-

öèé íàõîäÿòñÿ ïî ëèíåéíûì ôîðìóëàì. Ýòî çíà÷èòåëüíî óâåëè÷èâàåò âû÷èñëèòåëü-

íóþ ýôôåêòèâíîñòü. Ñëîæíîñòü ïðèìåíåíèÿ ìåòîäà çàêëþ÷àåòñÿ â íàõîæäåíèè ñóìì

ôóíêöèîíàëüíûõ ðÿäîâ "âçâåøåííûõ" ïîïðàâîê òåîðèè âîçìóùåíèé, êîòîðûå ìîæíî

íàéòè ëèøü ÷èñëåííî. Â ðàáîòå ïðèâåäåíû ôîðìóëû, óäîáíûå äëÿ íàõîæäåíèÿ "âçâå-

øåííûõ" ïîïðàâîê, ñóììèðóÿ êîòîðûå ìîæíî ïðèáëèçèòü ñóììû ýòèõ ôóíêöèîíàëü-

íûõ ðÿäîâ. Îäíàêî, åñëè íîðìà âîçìóùàþùåãî îïåðàòîðà âåëèêà, òî ñóììèðîâàíèå

"âçâåøåííûõ" ïîïðàâîê áûâàåò íå ýôôåêòèâíûì. Â ðàáîòå ïîëó÷åíû àíàëèòè÷åñêèå

ôîðìóëû íàõîæäåíèÿ çíà÷åíèé ñóìì ôóíêöèîíàëüíûõ ðÿäîâ "âçâåøåííûõ" ïîïðàâîê

òåîðèè âîçìóùåíèé â óçëàõ äèñêðåòèçàöèè áåç íåïîñðåäñòâåííîãî ñóììèðîâàíèÿ åãî

÷ëåíîâ. Ïðîâåäåíû âû÷èñëèòåëüíûå ýêñïåðèìåíòû ïî íàõîæäåíèþ çíà÷åíèé ñîáñòâåí-

íûõ ôóíêöèé âîçìóùåííîãî îäíîìåðíîãî îïåðàòîðà Ëàïëàñà. Ðåçóëüòàòû ýêñïåðèìåí-

òà ïîêàçàëè òî÷íîñòü è âû÷èñëèòåëüíóþ ýôôåêòèâíîñòü ðàçðàáîòàííîãî ìåòîäà.

Êëþ÷åâûå ñëîâà: ìåòîä ðåãóëÿðèçîâàííûõ ñëåäîâ; âîçìóùåííûå îïåðàòîðû; ñîá-

ñòâåííûå ÷èñëà; ñîáñòâåííûå ôóíêöèè; êðàòíûé ñïåêòð; "âçâåøåííûå" ïîïðàâêè

òåîðèè âîçìóùåíèé.
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