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The authors developed a numerical non-iterative method of finding of the value
of eigenfunctions of perturbed self-adjoint operators, which was called the method of
regularized traces. It allows to find the value of eigenfunctions of perturbed discrete
operators, using the spectral characteristics of the unperturbed operator and the eigenvalues
of the perturbed operator. In contrast to the known methods, in the method of regularized
traces the value of eigenfunctions are found by the linear equations. It significantly increases
the computational efficiency. The difficulty of the method is to find sums of functional series
of "suspended" corrections of perturbation theory, which can be found only numerically.
The formulas, which are convenient to find "suspended" corrections such that one can
approximate the amount of these functional series by summing up of them, are presented
in the paper. However, if a norm of the perturbing operator is large, then the summation of
"suspended" corrections can be not effective. We obtain analytical formulas, which allow to
find the values of sums of functional series of "suspended" corrections of perturbation theory
in the discrete nodes without direct summation of its terms. Computational experiments
are performed. These experiments allowed to find the values of the eigenfunctions of the
perturbed one-dimensional Laplace operator. The experimental results showed the accuracy
and computational efficiency of the developed method.

Keywords: method of regularized traces;  perturbed operators;  eigenvalues;
etgenfunctions; multiple spectrum; "suspended"” corrections of perturbation theory.

Introduction

The problem of finding of the eigenvalues and the eigenfunctions of the perturbed
self-adjoint operators is important for both applied mathematics and other fields of basic
research. In this regard, the establishment of new and development of existing numerical
methods for solving of spectral problems generated by perturbation discrete operators, are
an actual problems of modern mathematical modeling of different processes of nature.

A new method was developed in the works, which were written by S.I. Kadchenko,
together with academician V.A. Sadovnichii and professor V.V. Dubrovskii. This method
allows to calculate the first eigenvalues of perturbed self-adjoint operators and was called
the method of regularized traces (RT). Later, S.I. Kadchenko got very simple formulas
for calculating of eigenvalues of perturbation discrete operators and removed a number of
strong restrictions on the unperturbed and perturbing operators [1]. Tt greatly increased
the computational effectiveness and greatly expanded the class of operators to which the
method can be applied. S.I. Kadchenko and S.N. Kakushkin developed the ideas of the
method of regularized traces. As a result, a non-iterative method, which allows to find the
values of eigenfunctions of perturbed discrete operators in discrete nodes of the domain
of definition, was developed [2-4]. The main theorems, which are used in the construction
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of this method, are presented in this paper. Also formulas, which allow to calculate the
values of sums of functional series of "suspended" corrections of perturbation theory of
discrete operators, were obtained, and computational experiment was performed.

Let T be a discrete lower semibounded operator, and P be bounded operator, and
both are set in a separable Hilbert space H with domains of definition in D. Suppose that
the eigenvalues {\,}2%, of operator T" are known and are numbered in decreasing order
of their values. Also suppose that the orthonormal eigenfunctions {v,(z)}>; (x € D),
corresponding to these eigenvalues, are known and form a basis in H. Let v, be algebraic

multiplicity of the eigenvalue \,. Denote a number of unequal to each other \,, lying inside

|)\n0+1 + )‘no |

the circle T,,,, having radius p,, = and a centre at the origin of the complex

plane, by ng. Let {u,}°°, be eigenvalues of the operator T+ P, which are numbered
in not decreasing order of their real parts, and {u,(z)}>2; (x € D) be corresponding
eigenfunctions.

The following theorem was obtained in paper [5].

Theorem 1. Let T' be a discrete lower semibounded operator, and P be bounded operator,
and both are set in a separable Hilbert space H with domains of definition in D. If the

2| P o
% < 1 are hold for all n € N, then mog = Y, v, eigenfunctions
n+vy, — \n n=1
of the operator T'+ P are the solutions of system of nonlinear equations

inequalities q, =

mo mo
S uy(e () = 3 Arwy (o +Za"ww+wmww- 1)
j=1 j=1
Here N
®) _EDE K
)’ (mo,x,y) = —— | N[Krp(z, 25, \) o Py, " o Kp(zk,y, A)dA

21
Tny

are k-th corrections of perturbation theory to the "suspended” spectral function of the
operator T' 4+ P of integer order p;

(-1

(») ( o

@y (Mo, T y) / )‘p[KT(xa 241, )‘) o PZt+1]t+1

Thng
OKT-i—P(Zt-‘rl? Y, A)d>\7

operation "o" is introduced by the rule

(K 0 PoQ)(w,,\) t/szAPQ@%) . )

Kr(x,y, ) — kernel of the resolvent Rx(T') of operator T; T, — circle having radius p,, =
|)‘no+1 + )‘no‘

5 and centre at the origin of the complex plane.

It can be shown (using, for example, [6, chapter V, § 4, p. 331]), that ]gpgp) (mo, z,y)| —
0 for mo — oo. Then the system of equations (1) becomes:

ﬁmw@<> zmm><>+zdwmwm+¥%m%w7 ()
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where .
e (mo,,y) = Y o (mo, z,y).
k=t+1

The system of equations (3) is the basis of a new non-iterative numerical method of finding
of the values of the eigenfunctions u;(x) of perturbed operator 7"+ P at the nodes of the
sampling.

1. The RT Method to Calculate the Values of Eigenfunctions
of Perturbed Discrete Operators

The difficulty of using of the system of equations (3) to calculate the values of
products of u;(z)u;(y) is to find sums of "suspended" corrections of perturbation theory

oo

> a,&p)(mo,x,y), which can be find only numerically. The estimates of "suspended"
k=1

corrections of perturbation theory were obtained by analytical formulas.

Theorem 2. Let T be a discrete lower semibounded operator, and P be bounded operator,
and both are set in a separable Hilbert space H. If the mequalmes < 1 are hold for all
n € N, then for "suspended” corrections of perturbation theory o® (mo, z,y) of operator
T + P the following estimates are true:

2
g (mo, 2, y)| < —OHPH TS (4)

no qno

00 1 2 _
Here S\ = sup ( > —) , Jvi(x)] < Cp, Vi=1,00.
NeTny Ni=1 [A = Al

The convergence of sums of Rayleigh — Schrodinger functional series ) aﬁﬁ)(mo, z,y)

m=1
is proved in paper [7] using (4). There the estimates of them were obtained.

Theorem 3. Let T be a discrete lower semibounded operator, and P be bounded operator,
and both are set in a separable Hilbert space H. If the inequalities q, < 1 are hold for all
n € N, then for sum remainders of Rayleigh — Schrodinger functional series 6§p)(m0, x,y)
of operator T'+ P for any t,p,mg € N the following estimates are true:

qn
1% (mg, 2, y)| < OHPsz“s o (5)

no

00 1 2 _
Here S\ = sup (Z —) L vi(x)] < Cpy i =1, 00.
AETny =t [A — Al

If the norm of the perturbing operator P is small, then it is enough to approach the

o0
sum of functional series » a,(cp) (mo, z,y) by the first "suspended" corrections. The limiting
k=1

absolute errors of finding sums of functional series a;cp )(

k=1
formulas (5). In the following theorem we obtain formulas for finding the "suspended"

corrections of theory of perturbations a,(f )(

mo, z,y) are evaluated by the

mo, =, y) of discrete operators, such that one can
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find approximately the sum of Rayleigh — Schrodinger functional series ) a,(f )(mo, x,y)
k=1
by summing up them.

Theorem 4. Let T be a discrete lower semibounded operator, P be bounded operator, and
both are set in a separable Hilbert space H. Suppose the inequalities q, < 1 are true for all
n € N. Then the "suspended” corrections of theory of perturbations oz,(f) (mo, z,y) for any
natural k, p and mq can be find by the formulas:

mo [oe)
aP(mo,z,y) ==Y % v (@)T,,, (y)x
n=1j1,....jpr1=1 (6)

k
Xrl(gp)<n7.j17 "'7jk+1) 1__[1 ‘/jmjm+17

where
(0, Vjm #n,m=1,k+ 1;
1 “
~ lim e ] = .
») 4 , )R )\lig\ln EA, L=k +1;
T (e Jrn) = 1 gl AP .
iyt e (e 0<i<k
H1 (A= 24,)
( m=

Vij = (Pv;,v;) — inner product; I — number of coincidences j,, =n, m =1,k + 1.

The main determinant of the system of equations (1) is a Vandermonde determinant,
and is different from zero. Therefore one can find its solution, with respect to products of
u;(x)u;(y), by any appropriate method [5]. In the future, it is assumed that the eigenvalues
tr, are found by new RS method, which was obtained by S.I. Kadchenko in papers [1,9].

The technique of finding the values of products of eigenfunctions w;(x)u;(y) of
operators T'+ P is presented in the following theorem. This technique uses linear formulas
of calculation and allows do not direct solve a system of nonlinear equations (3).

Theorem 5. Let T' be a discrete lower semibounded operator, P be bounded operator,
and both are set in a separable Hilbert space H with domain of definition D. Suppose the
inequalities q, < 1 are true for all n € N. Then the value of the product of eigenfunction
un () and its conjugate one U, (y) for all values of the arguments x, y € D, can be find by
the formulas:

(@) () = 4 (Awon (27 (4)+

Hn

t
+ [0 (n,2,y) = o (0= La,y)] ) + 8V (.2, ),
k=1

(7)

where for Eﬁl)(n,x,y) the estimates

02 t
EM (n, 2, y)| < 272 HPHS,\leq—_q, Vt € N, n =1, mparetrue. (8)

n

& 1 2 _—
Here S\ = sup ( > —) , vi(x)] < Cp Vi=1,00, ¢ = maxgq,.
AeTny N it [A = Al n>1
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In general, the values of the eigenfunctions of a perturbed self-adjoint operator are
complex. The product of eigenfunction u;(z) (j = 1,mg) and its conjugate one u;(z) at
the same point z € D is the module of values of eigenfunction u;(z). Therefore, one can
not to restore the value of eigenfunction u;(x) by one point using the equation (3). But if
we consider the equation (3) for different points « and y, then it is possible to construct
an algorithm for calculating the values of eigenfunctions.

Let us illustrate this for the case where the eigenfunctions {w,(z)}°, of operator
T + P are functions of k variables: z = (1, X9, ..., % ). We introduce the difference grid for
arguments xy, Ty ... xx with steps hy, hsy ... hy respectively. Denote the number of nodes of
the arguments xq, x5 ... T by mq, mso ... my. Let us write the values x € D at the nodes
of a sample in the form

lejg...jk = (x1j17$2j27 ""mkjk)’ = 17mla l= 17k

Denote the right side (7) by ¢, (z,y). Then in the sampling nodes they take the form

un(xiliQ---ik )an(yju'z---jk) = ©n (xiliQ---ik y Yj1d2..dk ), (9)

where 4,5, = 1,my, | = 1, k.
Fix k — 1 coordinates of the sampling points and write the equation (9) for two node
pOiIltS Wlth COOI’diIlatGS $i1i2~~-ik7 xilig...ik and xiliQ.”ikJrl, x’h’iz...’ik

un($i1i2...ik+1)ﬂn<xi1i2...ik) = (Pn($i1i2...ik+17milig...ik)'

First step is to find up to the sign the values of real and imaginary parts of w, (i, i, +1)
in the following form:

Son(xilig...ikJrlxilig...ik) ’ 'ng _ W (10)
\/Sﬁn(IiliQ...z‘k, xilig...ik>

Up, (ajhiz...ik-i-l) - j:

Similarly, we find the value of the eigenfunction u,, in the rest of the node points.

Let us determine the sign within the grid for each value w,,(x;;,. s, ), which was founded
by the formulas (10).

Second step is to determine the sign of the founded values. To this end fix k£ — 2 values
of coordinates of grid points (in the description of the algorithm, to be specific, fix the
first k£ — 2 index) and consider the product of the form

un(xiliQ---ik—lyik )En (xi1i2~--ik—1,ik+1> (11)

and
Un(Tiyig..invin ) U (Tiyin. iy +100k)- (12)

Obviously, if the real part of the product (11) is negative, then values of function
u, have different signs in the points @;, i i a0d Ziy. i ,.in+1- Lherefore, one can
determine the change in the signs of values of eigenfunctions by looking at the values of
the real part of the products at each node.

Introduce an auxiliary coefficient &, which is equal 1 or —1. For all 7, = 1 the value ¢ is
set to be —1. We consider a sign of the product (12) at each sampling node and multiplie
a modules of values w, (%4, 4, ,+1.4,) by €. If the real part of the product (12) is negative,
then the sign of the coefficient £ is reversed.
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We carry out the same operations for the product (12). To not change the already
changed in the previous step signs of values w, (i, 4, _,.i,) for ig—1 =1 set £ = 1.

After the end of the described operations, we consider the coordinates of the remaining
node points, increasing the values of fixed index 71, iy, ... 74— in turn by one.

RT method algorithm composed by the above-described scheme is presented in [8].

In the following theorem we obtain formulas that are Convenient to find the sums of

(») (

functional series of "suspended" corrections of perturbation theory Z an’(mg, x,y).

n=1
Theorem 6. Let T be a discrete lower semibounded operator, and P be bounded operator,
and both are set in a separable Hilbert space H with domain of definition in D. If the
Junctions {v, ()}, (z € D) form an orthonormal basis in H, then the sums of functional
series of "suspended" perturbation theory corrections are foond by the formulas

mo

Z ol (mo, z,y) = k; 1V (2) 0 (y) — Apve ()0 (y) —
1t 3 { = (@) () + — v ()T (y) (13)
ji=1 det A(k) det A

m—1 ‘/;1mvzgmA A (k)

S Mwm)%(y)] + 0 (mo, 2.).
Ju.j2dani2=1  det A (k) det A (k
Here
o) (o, ,y)| < Zw[zm " \er [+ 1P,
! z VinA® | =T =1
k v . im<L; 7 =1,m—=1
7Y =4 et A® !
1, [ =m.
C = max |v;(2)], |6% (mo, 2, y)| "=3° 0, ™ = up(z)—ul™ (2), u\™ (x) - approzimation of
= i s |Um y by » Sk k k s Wp pp

the eigenfunction u(x), A®) = (aij)i%=1, m € N, ag; = Vij+(Ni—px)dij, Vij = (Pvi,v;5), 6ij
— Kronecker symbol, Ag;) ~ cofactors to the matriz entries A®) . The bar denotes complex
conjugation.

Proof.
Let the system of eigenfunctions {v,(z)}>2; of operator T form an orthonormal basis
in H. Then the eigenfunctions wuy(x) of operator 7'+ P can be represented as

g () = i Fy(z). (14)

Let 6,(;”) = ug(z) — ugcm) (x), where u,gm)(x) — m-th partial sum of functional series (14).
Transform entries of the matrix Apyum = (ay)i%=;, where a;; = ((T + P)vi,v]). By

the equations T'v,, = \,v,, and orthonormal system of functions {v,, }°°; one can write the
chain of equalities:

aij = <<T + P)’Ui,Uj> = (T’Ui,Uj) + (PUZ',’UJ‘> =
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= (Nivy, vj) + (Pv;, v) = Ni(vi, v5) + (Pvi,v5) = Nidiyy + Vig,

0, i#
An eigenvector X\ = (@ 2 2T of matrix Apem (K = T,m),
corresponding to an eigenvalue uy, must satisfy the matrix equation:

(Amxm — E)X™ =0

1,1=j L —
me@j:{ 2= — Kronecker delta, 7,7 = 1,m, m € N.

AJIn . . .
(an - uk)x§ ) + algxg ) + ...+ @1m$£n) =0;
a21x§k) + (a22 - /Mg)xgk) + ...+ a2mxg§) =0; (15)

amﬂgk) + amQIék) + ..+ (Cmm — ,uk)qu]i) —0

An eigenvector X,(Cm) is defined up to a factor. Therefore, let component xﬁ,’i) of vector

X,(Cm) be equal to unity. Discard the last of the equations of the system (15). Note that
the remaining equations are linearly independent. The resulting system of equations can
be presented in matrix form:

(k)

Ty
9 2
A k) 2 =B~
(k)
T
m (k) (16)
ari; — Ui Q12 a1,m—1 L1 —Q1m
k
N Az A — [l - az.m—1 2P [ —aam
a a a — (k) —a
m—1,1 m—1,2 m—1,m—1 — Mk T m—1,m

m—1

From the form of a matrix A xm — ik it is followed that a;, = Vi, ¢ = 1,m — 1.
We solve heterogeneous system of equations (16) by the inverse matrix method:

L1
2% 9
2 — [A(’“)]“B -
131(:)71
< (k < (k k
A A e A )
— 1u A12 A22 Am71,2 —Vom _
det A*)
< (k g (k v (k _
A(l,r)n—l A(Qr)n 1 Agn)—l,m—l m—1,m
m—1 o
- Z VimAgllg)
i=1
m—1
< (k
_ 1 = 3 Vin Al
det A(K) =t
m—1
< (k
- ~ V;mAz(,mfl
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— algebraic complements of entries of the matrix A® (4,7 = T,m — 1).

Therefore, components of the vector X,(Cm) (k =1,m) take the form
() ! ZV AW =T m—1;
7' =9 detAl oY 7 7 (17)
1, l=m
Solve a system of equations (3) on ) )(mo,x Y)
k=1

o mo

> af (mo,a,y) = > |hue()e(y) — Now@)m(y)| =

k=1 k=1

mo

=3 [ (u @)+ ) (5 ) + 2 ) = Nv(@on)| =
k=1

s (@) + =T () + e | - Mule)my) | =

£ @)+ )+ ] =

= [:Ukuk
k=1 k=1
= 3 [l @ 0) - Mo )] + 02 ma. ..
k=1
(M) on the elements of an orthonormal

Decompose the components of the eigenvector X
basis {v;(z)}, (z € D), using formulas (17):

m m—1m—1
1 o
(k) (k)
=D 2 () = om(2) = —== > Y Vi Ay vs(). (18)
— det AR <= = ’
Substitute formulas (18) in term for > a” (my, z, y):
k=1
mo 1 m—1
Za (movz.9) = 3 2 (vm() = > Vi 0;(2) ) x
m—1
1 —
X (Tnly) - = VinAPT5()) = Xow(@)tely)] + 0% (mo,,y) =
det A(k) jyi=1
k=1 R det A®) 75 e det AW =) e
m—1 )
‘/z1mV12mA’L Az —
+ S (), (y) b~ Neow(@)Te(y)| + 08 (mo, @) =
J1,42,01,52=1 detA detA
55
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mo m—1 17 {(k) 5 (k)
VzmAz _ ‘/:LmAZ _
= > [ @) ()= X @)uly) 4 D { = (@) )+~ v ()
k=1 Gi=1 det A(k) det A

m—1 7 K (k)
Vi Vi A®) AW
w3 ey @) + 87 (me,0,y).
Ji,j2,i1,02=1 e €

We estimate residues |05 (mo, =, y)|:

‘ (mo,z,y ‘ = ’Z“k [ek uk )+5,(€m)u,g () +5§Cm)§,(€m)” <

m

<Z|uk|p[|(]€ Zx(k|—|—|05 Z | + |eimgl )I]S

=1

mo m
m k m
<> el [21C1 - 113 [0+ ).
k=1 j=1

Here C' = max [v;()|, and xgk)

i=1,m

The theorem is proved.

are calculated by formulas (17).

2. Computational Experiment

Let an operator 7' = —A be defined on the interval D = [0,]. As a perturbing operator
P we take the operator of multiplication by function p(z), defined on the interval D.
Consider the spectral problem

(T + P)u = pu, u € Dr.
Dy = {u | ue CAD)NC(D), Au € Ly[D] : u‘o — u‘l —0}.

It is well known that eigenvalues A, and eigenfunctions v,(z) of 1-dimensional Laplace
operator have the form:

An = <¥>2, vn(z) = sin(y/Auz), z € D.

Using formulas (7) and (13) the values of the fifth and sixth of the eigenfunctions of
the perturbed operator 7'+ P were found. Tables 1 and 2 shows the values of the left and
right sides of the equation (7" + P)u,, = fiyUy,.

Table 3 shows the values of the residual ||[(T 4+ P)u, — pnuy| for the first 10
eigenfunctions u,, for different perturbing operator P.
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Table 1

The values (T + P)us and psus for a perturbed Laplace operator calculated for [ = 1 and

p(z) = 2

(T + P)us(z;) — psus(z;)

j (T + P)us(z;) msus(z;) (T + P)us(z;) — psus(z;) s () x 100%
5us (5
0, 142857 | 272,83735198766 | 273,18110548326 0, 34375 0, 125834
0,285714 | 340,30702671043 | 340,65126665861 0, 34424 0,101053
0,428571 | 151,51348751144 | 151,60407602055 0, 09059 0,059753
0,571429 | 151,60114526407 | 151,60407602055 0, 00293 0,001933
0,714286 | 340,89792225718 | 340,65126665861 0, 24666 0,072407
0,857143 | 273,62712104909 | 273,18110548325 0,44602 0,163267
Table 2

The values (T + P)ug and pgug for a perturbed Laplace operator calculated for [ = 1 and
p(z) = sin% +1

(T + P)ug(z;) — pous(z;)

j (T + Pus(z;) meus(z;) (T + P)us(z;) — peus(z;)| oo () x 100%
6u6(T;
0,142857 | 218,65994242645 | 218, 73206609730 0,0721237 0,0329735
0,285714 | 394,06411361875 | 394,14156393128 0,0774503 0,0196504
0,428571 | 491,45509644760 | 491,48649119961 0,0313948 0,0063877
0,571429 | 491,51983562427 | 491,48649119961 0,0333444 0,0067844
0,714286 | 394,21974628211 | 394,14156393128 0,0781824 0,0198361
0,857143 | 218,80367419419 | 218, 73206609730 0,0716081 0,0327378
Table 3

The values of the residual ||(T" + P)u,, — pnu,|| for a perturbed Laplace operator
calculated for [ =1, m =n

Conclusion

(T + P)un — pnunl| (T + P)un — pintin |

n for z for
p(z) = sin 3 +1 p(x) = x2

1 0,05933175453013449 0, 18486186946562712
2 0,08722167298850077 0,26982226399384459
3 0,09141711850816346 0, 28555566913308841
4 0,09283781270256698 0,29106235945347709
5 0,09348757188208574 0,29361116877997433
6 0,09383850642063260 0,29499570545892765
7 0,09404942961086482 0,29583053561545063
8 0,09418605494412680 0,29637237064820354
9 0,09427960126060587 0,29674384907194357
10 0,09434645249551450 0,29700956347750404

The paper presents the main theorems, which are used to substantiate the method
of regularized traces of finding of the values of eigenfunctions of perturbed self-adjoint
operators in the sample nodes. For the first time formulas, which allow to calculate the
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values of sums of functional series of "suspended" corrections of perturbation theory
of discrete operators, were obtained. Computational experiments are performed. These
experiments allowed to determine the values of the eigenfunctions of the perturbed
one-dimensional Laplace operator. The experimental results showed the accuracy and
computational efficiency of the developed method.
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BBIUMCJIEHUE 3HAYEHNN COBCTBEHHLIX ®YHKITII
BOSMVYIIEHHBIX CAMOCOIIPA2KEHHBIX OIIEPATOPOB
METOAO0OM PEI'VJIAPN30BAHHBIX CJIEJ1OB

C.H. Kaxywrun, C.U. Kaduernro

Apropamu crarbu ObLT pa3zpabOTAH HEUTEPAIIMOHHBIA YUCIECHHBI METO]] HAXOK ICH ST
3HaYeHnul COOCTBEHHBIX (DYHKIUN BO3MYIIEHHBIX CAMOCOIPSIKEHHBIX OIEPATOPOB, HA3BAH-
HBI METOJOM PEryJIsipu30BaHHLIX cyieAoB. OH TMO3BOJsIET HANTH 3HAYEHUS] CODCTBEHHBIX
GYHKIMIE BO3MYIIEHHBIX JUCKPETHBIX OMEepaTOpPOB, 3Has CHEKTPAJILHBIE XapaKTePUCTUKH
HEBO3MYIIEHHOIO OIE€PATOpa M COOCTBEHHBIE YHCJIA BO3MYUIEHHOTO oneparopa. B ornudnn
OT W3BECTHBIX METOMIOB, B METOJIE PETYJISIPU30BAHHDBIX CJIEI0B 3HAYEHUS COOCTBEHHBIX (DYHK-
nuit HAXOAATCA O JIMHEHHBIM (GOpMyIaM. DTO 3HAYUTETHHO YBETUIMBACT BBIYUCIUTETh-
Hy10 3P PeKTUBHOCTE. CIOKHOCTH TPUMEHEHUST METOIA 3aKII0UAETCS B HAXOKICHUU CyMM
GYHKIIMOHAIBHBIX PAI0B ' B3BEIEHHBIX' TOMPABOK TEOPUH BO3MYIIEHHUH, KOTOPBIE MOYKHO
HaliTH JuIk gncyienHo. B pabore npueenens (hoOpMyIibl, yIOOHBE i HAXOXKJIEHUS "B3BE-
meHHbIx" TOMPaBOK, CYMMUPYs KOTOPbIE MOYKHO TPUOIU3UTH CYMMBI 3TUX (OYHKIMOHATh-
HbIX psnoB. OHAKO, eciu HOPMa BO3MYINAIONIETO OMEPATOPA BEIWKA, TO CYMMHUPOBAHHE
"p3BemeHHbIx" nonpaBoK ObiBaeT He 3pdeKkTuBHBIM. B pabore 1oJyyeHbl aHAIUTHYECKUE
bOPMYJIBI HAXOXKIEHUS 3HAYECHUN CyMM (DYHKIMOHAJBHBIX PTOB "B3BEIEeHHBIX" TOMPaBOK
TEOPUM BO3MYIIEHUH B y3JIaX JUCKPETU3anyuy 0e3 HEMOCPEJICTBEHHOTO CYMMUPOBAHUS €ro
ajieHOB. [IpOoBeIeHbI BEIYUCIUTEILHBIE IKCITIEPUMEHTHI 1T0 HAXOXKAEHUIO 3HAUEHUl cOGCTBEH-
HBIX (DYHKIIHN BO3MYIIEHHOIO OTHOMEPHOro oneparopa Jlamraca. Pesyaprars: sxcnepumen-
Ta, TMOKA3AJIM TOYHOCTH M BBIYUCIAUTENBHYIO 3P HEKTHBHOCTh pa3paboOTaHHOTO METOIA.

Karoueenie cao6a: memod pezyrapuzosaniole caedos; 803MYULEHHbLE ONEPEMOopbl; c06-
CMBEHHbIE WUCAG; cobcmeeHnve PYHKyUY;, Kpamuoil cnexkmp; "ezsewennvie” nonpasku

MEOPUY B03MYULEHUT.
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