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For a given partially ordered set (poset) and a given family of mappings of the poset into
itself, we study the problem of the description of joint fixed points of this family. Well-known
Tarski’s theorem gives the structure of the set of joint fixed points of isotone automorphisms
on a complete lattice. This theorem has several generalizations (see, e.g., Markowsky, Ronse)
that weaken demands on the order structure and upgrade in an appropriate manner the
assertion on the structure of the set of joint fixed points. However, there is a lack of the
statements similar to Kantorovich or Kleene theorems, describing the set of joint fixed points
in terms of convergent sequences of the operator degrees. The paper provids conditions on
the poset and on the family; these conditions ensure that the iterative sequences of elements
of this family approximate the set of joint fixed points. The result obtained develops in a
constructive direction the mentioned theorems on joint fixed points.
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Introduction

The key object in the solution of the differential game of quality — the maximal stable
bridge [1] — is the greatest fixed point of a special operator (programmed absorption
operator) acting in the boolean of the extended phase space of controlled system [2]. In its
turn, the action of this operator is described by actions of some operator family, in such a
way that any joint fixed point of this family is a fixed point of the original operator. This
relation makes it possible to describe the object of interest — the maximal stable bridge
— in terms of the operator family with a relatively simple structure.

The paper presents the theorem on the joint fixed points of a family of mappings
arising in connection with the above. This result develops in a constructive direction well-
known Tarski’s theorem [3, theorem 2| on the structure of the set of joint fixed points
of automorphisms on a complete lattice. This theorem has a number of generalizations
(see, e.g., |4, theorem 10; 5, corollary 3.3|, weakening demands on the order structure
and upgrading in an appropriate manner the assertion on the structure of the set of joint
fixed points. However, there is a lack of known statements like the Kantorovich theorem
(see [6]) or Kleene theorem that describe the set of joint fixed points in terms of convergent
sequences of the operator degrees. Theorem 1 below fills this gap.

1. Results

Let (X, <) be a partially ordered set (poset). A set C' C X is called a chain if it is
totally ordered by <:
=y Vysz) VryeCl

In particular, @ is a chain. Following [4] we call a poset (X, =) chain-complete poset if,
for every chain C' C X, there exists the least upper bound sup C' of the chain C in X.
In particular, a chain-complete poset (X, <) contains the least element 1 € X (as the
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least upper bound of the empty chain), and thus it is not empty. Let (W, <) and (X, X)
be chain complete posets and f : W — X. The mapping f is called isotone if Vo,y € X
(x < y) = (f(x) < f(y)). We say that the mapping f is chain—continuous if, for any
non—empty chain C' C W, the equality f(sup C) = sup{f(w) : w € C} holds. We say that
(X, =) is a complete poset |7, p. 1.2.1], if there is the least element L :=sup @ and each
directed set D C X has the least upper bound sup D. Recall that a set is called directed
if any its finite subset has a majorant.

Let X # @ and a non-empty family F of mappings f: X — X Vf € F be given. We
call the set Ext(F):={z € X |z % f(x) Vf € F} the extensivity domain of the family F.
Denote the set of all finite compositions of mappings from F by

Iter(F):={fg...h| f,g,...,h € F}
here fg...h stands for the composition of mappings f.g,..., h:

fg...h(x):=f(g(...h(x)...)) Ve € X.

If f=g=...=h, then we denote f*:= fg...h, where k:=|{f,g,...,h}|is the number
of elements in the composition fg...h. Thus, Iter(F) C XX. We say that the family F is
commutative if

fog=g9f Vf,geF.

Denote by Fix(f) C X the set of fized points of mapping f € F: Fix(f):={z € X |z =
f(z)}. Finally, we denote by Fix(F) C X the set of joint fived points of the family F:
Fix(F):=N;er Fix(f), i.e. f(x) = 2 Vo € Fix(F) Vf € F.

Theorem 1. Let (X, <) be a chain-complete poset and let F be a commutative family of
wsotone mappings from X into itself. Then

(i) if X is a complete lattice, then Fix(F) is a complete lattice with respect to the
induced order; thus it has the least element Lyixr) and, in particular, Fix(F) # @
(Tarski);

(ii) Fix(F) is chain-complete with respect to the induced order; thus it has the least
element Lyix(r) and, in particular, Fix(F) # @ (Markowsky);

(iii) if elements of F are chain-continuous, then

Fix(F) = {sup{¢(x) | ¢ € Tter(F)} | x € Ext(F)}, (1)

and, in particular,
Lrix(r) = sup{p(L) | ¢ € Iter(F)}. (2)

In the case when the family F is a singleton, we obtain the corollary.

Corollary 1. Let f : X — X be an isotone mapping on a chain-complete poset (X, <X).
Then

(i) if X is a complete lattice, then Fix(f) is a complete lattice with respect to the
induced order; thus so it has the least element Lgix(y) and, in particular, Fix(f) # @
(Tarski),

(ii) Fix(f) is chain-complete with respect to the induced order; thus it has the least
element Lgix(r) and, in particular, Fix(f) # @ (Markowsky),
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(iii) if f is chain-continuous, then (Kleene)

L) = sup{f"(1) | n € N}, )
(iv) if f is chain-continuous, then
Fix(f) = {supl"(s) | n € N} | 2 < f(2)}. (W

2. Proofs

Assertion (i) of theorem 1 is contained in [3, theorem 2|, assertion (ii) of theorem 1 is
contained in [4, theorem 10]. Let us turn to the proof of the assertion (iii) of theorem 1.

First, we note that, by virtue of [8, p. 33| (see also [4, corollary 2|) and of chain-
completeness condition, the set X is a complete poset. From the chain-continuousness of
elements of F it follows that they are isotone in (X, <):

(r<y) = (f(x) S fly) Vo,ye XVfeF (5)
By induction (5) implies the isotonicity of elements in Iter(F) with respect to relation <:
(z<y) = (e(@) S @(y))  Vo,y € X Vo € Iter(F). (6)
In addition, as the family F is commutative, so is the family Iter(F):
p=1vp Vo, € Iter(F). (7)
Let us prove the equality
Ext(Iter(F)) = Ext(F). (8)

Since F C Iter(F), the embedding Ext(Iter(F)) C Ext(F) takes place. Let us show the
converse inclusion. Let 2’ € Ext(F). We prove the inequality = < ¢ (2') for all ¢ € Iter(F)
by induction by the number of elements consisting ¢ (by the "length" of ). The induction
base (for the "length" 1) follows directly from the choice of z’. Let the inequality © < ¢(z’)
hold for all ¢ € Iter(F), with the "length" not exceeding k € N. Let ¢’ € Iter(F) have
the "length" k + 1. Therefore, ¢’ has the form g¢’, where g € F, ¢’ € Iter(F) and the
"length" of ¢’ is equal to k. By the induction hypothesis, we have ' < ¢'(z'). Then, by
virtue of (5), we obtain g(z’) < g¢'(2’) = ¢'(2’) and, in addition, by the choice of 2’, we
have 2’ < g(z'). By transitivity of <, from the last two relations we obtain the inequality
' g Y'(a'). Since ¢’ is chosen arbitrarily, we have 2’ € Ext(Iter(F)). Since the choice of
x’ is arbitrary, the embedding Ext(F) C Ext(Iter(F)) holds. This completes the proof of

(8).
Property (8) implies the fact that the set {¢(x) : ¢ € Iter(F)} is directed for any
x € Ext(F). Indeed, using (6), (7), and (8), we have

(@) S ¥(e(x) = p(d(z),  wlr) Se(r) Vi, ¢ € lter(F) Vo € Ext(F).

Note that there are the same items in the right-hand side of these inequalities.
Consequently, for all ¢, 9 € F the two-element sets {((z), ¢ (z)} has majorant. Using the
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transitivity of the relation < we can extend this property by induction to an arbitrary finite
subset of X. Thus, the set {p(z) : ¢ € Iter(F)} is directed for any = € Ext(F). Hence,
since (X, x) is complete poset, for any = € Ext(F), there exists sup{¢(x) : ¢ € Iter(F)}.
The set Ext(F) is not empty, since L < f(L) for all f € F. Thus, the right-hand side of
(1) is well defined and non-empty set.

Let 2’ € Fix(F). Then, obviously, 2/ < f(2’) and 2/ = ¢(2') for all f € F and
¢ € Iter(F). Therefore, 2’ € Ext(F) and 2’ = sup{z’'} = sup{e(2’) : ¢ € Iter(F)}. That
is, o’ € {sup{p(z) : ¢ € Iter(F)} | z € Ext(F)} and by virtue of the arbitrary choice of
x’ we have

Fix(F) C {sup{p(z) : ¢ € Iter(F)} | z € Ext(F)}. 9)

Let us show the converse inclusion. Let u be an arbitrary element of the right-hand side
of (9): u = sup{p(Z) : p € Iter(F)}, where T € Ext(F). Let g € F. By the condition of
assertion (iii) ¢ is chain-continuous and, in addition, poset X is chain-complete, and, so,
strictly inductive (that is, every non-empty chain has the least upper bound). Therefore,
for an arbitrary directed set D C X, holding in mind [4, corollary 3|, we have the equality

g(sup D) = sup{g(z) : x € D}. (10)

By virtue of the choice of 7, the sets D:={¢(7) : ¢ € Iter(F)} and {g(z) : € D} are
directed; thus there exist the least upper bounds sup D and sup{g(z) : # € D}, which,
because of (10) and the embedding {g(¢(Z)) : ¢ € Iter(F)} C {¢(Z) : ¢ € lter(F)},
satisfy the relations

g(u) = g(sup D) = sup{g(z) : x € D} < sup D = u. (11)

On the other hand, because of Z choice, we have T < g(Z), and, by means of (6) and
(7), we get ©(Z) < ©(9(T)) = g(e(Z)) Yo € Iter(F). In other words, y < g(y) Yy € D.
Then, once again using (10), we get

u=sup D =sup{z: z € D} < sup{g(z) : z € D} = g(sup D) = g(u). (12)

From (11), (12) it follows that g(u) = w. Due to the arbitrary choice of g we have u €
Fix(F). Since u is chosen arbitrarily we obtain the embedding

{sup{p(z) : ¢ € Tter(F)} | z € Ext(F)} C Fix(F),

which in conjunction with (9) gives the desired equality (1).

We turn to the proof of (2). Let 2’ € Ext(F). By definition of L and (6) it holds
that (L) < p(2) Ve € Iter(F). By the choice of 2’ the set D :={¢(2’) : ¢ € Iter(F)}
is directed in (X, x). Since (X, <) is a complete poset, there exists sup D’. Of course,
o(x') g sup D' YV € Iter(F). From the last two inequalities we have

o(L)xsupD" Vo € Tter(F),

that is, sup D’ is a majorant of the set {¢(L) : ¢ € Iter(F)}. By virtue of L € Ext(F),
the set {p(L) : ¢ € Iter(F)} is ordered. Hence, there exists sup{¢(L) : ¢ € Iter(F)} and,
by definition of the least upper bound, we have the inequality

sup{p(L) : ¢ € Iter(F)} < sup D"
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Since 2’ is chosen arbitrarily and due to (1), we have
sup{p(L) : ¢ € Iter(F)} € Fix(F).

sup{o(L) : p € Tter(F)} < u  Vu € Fix(F).

The relations imply the desired equality (2). Proof of theorem 1 completed.

To substantiate corollary 1, we note that assertions (i) and (ii) of the corollary are a
special cases of assertions (i) and (ii) of theorem 1, respectively. Equalities (3) and (4) are
a special cases of equalities (2) and (1), respectively.
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OB AIITIIPOKCUMAIIN COBMECTHBIX
HEIIOABUN2KHBIX TOYEK

I.A. Cepxos

PaccmarpuBaercs cemeiicTBO M30TOHHBIX ABTOMOPMU3MOB YaCTUIHO YIIOPSIOUEHHOTO
MHOMXKecTBa. 3BecTHa Teopema Anbdpena Tapckoro o CTpyKType MHOXKECTBA COBMECTHBIX
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HEOJBYKHBIX TOYEK TAKUX ABTOMOP(MU3MOB HA I[OJHON PEIIeTKe. DTa TEOPEMa HMeer
HECKOJIBbKO 0000Mmenuii (cM., HarmpuMep, paborsl Mapkosckoro i Por3za), ocaabagomux
TpeDOBaHUs HA MPSAKOBYIO CTPYKTYDPY W MOJEPHU3UPYIOMIAX COOTBETCTBYIOMUM 00pa30M
yTBEpzKJIAeHne B 9aCTU CTPYKTYPBI MHOZKECTBa COBMECTHBIX HEIMMOJABUZKHBIX TOYEK. BMeCTe C
TeM, 3aMeTeH HeJIOCTATOK yTBep:KaeHuil Tuma reopeMm Kanroposwua man Kiwan, onrcbiBa-
TOIUX 9TU HEMOABUKHBIE TOUKN KAK [IPE/IEbI TOCJIEI0BATEILHOCTEH CTemHeH aBTOMOPdn3-
MOB. B crarbe mpUBOAATCS YCIOBUS HA MHOYKECTBO U CEMENCTBO €10 aBTOMOP(MU3MOB, TIpH
KOTOPBIX UTEPATUBHBIE TIOCAETOBATEILHOCTH 3JIEMEHTOB PACCMATPUBAEMOrO CeMeiCTRa, an-
TTPOKCUMUPYIOT MHOXKECTBO COBMECTHBIX HEIOJBUZKHBIX TOYECK. ,ZL&HHbIﬁ pe3yabTaT pa3Bu-
BaeT B KOHCTPYKTHBHOM HAIIPABJICHUH YIOMSHYTbBIE yTBep:KaeHua Tapckoro, MapKoOBCKOTO
n Pomza.

Kmouesnie caosa: cosmecmmvie HENOGGUIICHDLE moyxu, umepauuonmnﬂ npedeﬂ.
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