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QUESTION OF UNIQUENESS OF RECOVERY
OF POTENTIAL BY SPECTRUM IN THE INVERSE BORG
LEVINSON PROBLEM WITH ROBIN BOUNDARY
CONDITIONS
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The inverse Borg � Levinson problem with Robin boundary conditions, such that

conditions for the uniqueness of the recovery of potential by spectrum are formulated

for it, is considered in the paper. A similar problem, but with the Dirichlet boundary

conditions, is enough studied. It is well known that the uniqueness of the recovery of

potential is independent on removing of a �nite number of spectral data in the inverse

Borg � Levinson problem with Dirichlet boundary conditions. In the present paper we

prove that the theorem, which was obtained for the Dirichlet boundary conditions, holds

also for problem with Robin boundary conditions. To this end, we prove the theorems about

the uniqueness of recovery of potential in the inverse Borg � Levinson problem with the

Robin boundary conditions. Also we answer the following question. Suppose we know the

nature of the asymptotic expansion of its eigenvalues. When this problem has a unique

solution? The method to create a mathematical model of the recovery of potential in the

inverse Robin problem is presented on the basis of it.

Keywords: inverse Borg � Levinson problem; eigenvalues; eigenfunctions; Robin

boundary conditions.

Introduction

A problem of recovery of the operator by its given spectral characteristics is called
an inverse problem of spectral analysis. Such characteristics can be spectra (with various
boundary conditions), spectral function, scattering data, and others. The main idea of
applications of inverse problems is the following: to measure certain quantities, which can
be measured, and to obtain an information about the physical quantities on the basis of
it. Consider the inverse problem of scattering on a potential. Here a physical quantity is
the potential q(x) of the Schrodinger equation, and the measured value is the scattering
amplitude. In particular, some problems of quantum mechanics lead to problems of such
type. For example, to determine of intra-atomic forces by given energy levels, i.e. by the
spectrum, which can be found experimentally. Many inverse problems have not the only
solution. For example, Borg showed that Sturm � Liouville operator generally is de�ned
not uniquely by a single spectrum. Therefore, one of the most important problems is the
uniqueness of the recovery of potential. A question about the identi�cation of additional
conditions, which ensure an uniqueness of the solution of the inverse problem, appears
during solution of this problem.

For the �rst time the inverse problem for the Sturm � Liouville operator was set
by V.A. Ambartsumian. In the simplest formulation, it was to identify the operator,
when its spectrum is known. Further advances in the theory of inverse problems have
been achieved by applying to the investigation of inverse problems the so-called operators
of conversions. This method was developed in detail in the works of V.A. Marchenko,
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M.G. Crane, I.M. Gelfand, B.M. Levitan, L.D. Faddeev, M.G. Gasimov, Y.M. Berezanskii
and others. They considered the theorems about the existence of the potential in the inverse
problem of spectral analysis for ordinary di�erential equations. Note that the formulation
of the inverse spectral problem was to �nd the potential of a given spectral function ρα(λ).

Spectral problem for the Laplace operator with potential was set by Y.M. Berezanskii.
He proved that in the equation given in a �nite or in�nite bounded domain G of three-
dimensional space,

−△u+ c(p)u = λu, Im c(p) = 0

with the boundary condition
∂u

∂n
+ σ(p)u = 0,

where σ(p) � continuous real function of point p on the boundary Γ of domain G, the
spectral function ϑ(p, q, λ) (p, q ∈ I,−∞ < λ < ∞) uniquely determines the coe�cient
c(p) in the class of piecewise analytic coe�cients and boundary condition on a part of the
boundary Γ, i.e. function σ(p).

In 1990 M.I. Belishev [1] proposed an approach to solve multidimensional inverse
problems of wave equation. This approach is based on the connection of boundary inverse
problems with the boundary control problems. Here unknown factor (density), which is
part of the wave equation, is restored during the solving of the problem of continuation of
wave �elds.

In 1988 A.I. Nachman, J. Sylvester , G. Uhlmann [12] published a paper about the
proof of the multidimensional Borg � Levinson theorem. They considered the following
problem: {

(−△+ q)u = λu â Ω,
u|S = 0,

(1)

where Ω � bounded domain in Rn (n ≥ 2) with boundary S of class C∞. They proved
the uniqueness of the recovery of potential q if all of eigenvalues and the values of the
derivatives along the normal to the boundary S of all eigenfunctions of this problem are
known.

Subsequently, F.C. Ramm, T. Suzuki, G. Alessandrini, J. Sylvester presented similar
results for other inverse problems of spectral analysis. The theorem about the uniqueness of
the solution of inverse problems includes the values, which do not a�ect on the uniqueness
of the recovery of potential. This fact become clear after paper written by H. Isozaki [5].
He proved a theorem about the uniqueness of the recovery of potential in the presented
problem for the case, if there is not a �nite number of spectral data.

The problem of uniqueness of the recovery of potential in the inverse problems of
spectral analysis by inexact given spectral data was �rst studied by V.V. Dubrovskii,
L.V. Smirnova [3, 4, 14�20]. So the question about the uniqueness of recovery of potential
in the Neumann problem, if there is not an in�nite number of eigenvalues and values
of eigenfunctions on the boundary of a given domain, was resolved in paper [4]. Later
V.V. Dubrovskii demonstrates the following. Let Ω be bounded domain in R2 with
boundary S of class C2. Let a certain character of the asymptotic expansion of eigenvalues
and certain additional conditions hold. Then the recovery of potential in inverse problems
for Dirichlet and Neumann problems is unique. Possibilities of numerical methods for
solving of spectral problems are considered in papers [1�6], written by S.I. Kadchenko and
S.N. Kakushkin.
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The article discusses the inverse Borg � Levinson problem with Robin boundary
conditions in statement of work by H. Isozaki [5]. In his article H. Isozaki concluded
that the uniqueness of the recovery of potential is independent on removing of a �nite
number of spectral data in the inverse Borg � Levinson problem with Dirichlet boundary
conditions. In the present paper we prove that the theorem, which was obtained for the
Dirichlet boundary conditions, holds also for problem with Robin boundary conditions.
Also we answer the following question. Suppose we know the nature of the asymptotic
expansion of its eigenvalues. When the inverse problem with Robin boundary conditions
has a unique solution? The method to create a mathematical model of the recovery of
potential in the inverse Robin problem is constructed on the basis of it.

1. Theorem about the Uniqueness of the Recovery of Potential
by Incomplete Spectral Data

Let Ω be bounded domain in RN , N ≥ 2 with boundary S of class C∞. Consider the
Robin problem for real function q ∈ C∞(Ω), for real function δ ∈ C∞(S), δ(x) ≤ 0:{

(−△+ q)v = λv,[∂v
∂ν

− δv
]∣∣∣

S
= 0,

(2)

where ν is inner normal to the surface S, λ � is spectral parameter.
Problem (2) has not more than a countable number of eigenvalues µ1, µ2, µ3, ...,each

of which has a �nite multiplicity. Let µ1 ≤ µ2 ≤ µ3 ≤ ... be eigenvalues of this boundary
problem, taken with regard to their multiplicities, and v1, v2, v3, ... be corresponding them
orthonormal eigenfunctions.

We denote a multiplicity of eigenvalue µt as mt. Orthonormal eigenfunctions
corresponding to µt denote by vjt, 1 ≤ j ≤ mt. These sets of functions are not uniquely
de�ned.

Suppose

Et =
{(

v1t, v2t, ..., vmtt

)∣∣∣
S

}
.

Two systems of eigenfunctions
{
u1t, u2t, ..., umtt

}
,

{
v1t, v2t, ..., vmtt

}
are said to be

equivalent, if there exists an orthogonal matrix T such that(
u1t, u2t, ..., umtt

)∣∣∣
S
=

(
v1t, v2t, ..., vmtt

)∣∣∣
S
· T.

Obtained equivalence classes are denoted by Ut.
We introduce Dirichlet operator D : L2(S) → L2(S) by the equality

D(λ, q)f = v|S.

Here f, v ∈ C∞(Ω) are considered as an elements of L2(Ω) and function v ∈ C∞(Ω) is a
solution of Robin problem for

λ ∈ C, λ ̸= µt(q), t = 1,∞ :{
(−△+ q)v = λv,[∂v
∂ν

− δv
]∣∣∣

S
=

∂f

∂ν
− δf.
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We introduce ⟨f, g⟩ =
∫
S

f(x)g(x)dSx.

De�nition 1. A function F is de�ned by an equality:

F (λ, ω, θ; qj; δ) =

∫
S

(
D(λ, qj)

(∂φλ,ω

∂ν
− δφλ,ω

))
(x)

(∂φλ,−θ

∂ν
(x)− δφλ,−θ(x)

)
dSx,

where φλ,ω(x) = exp(i
√
λω · x), λ ∈ C/(−∞; 0), ω ∈ SN−1, θ ∈ SN−1.

To prove the theorems about the uniqueness of recovery of potential for Robin
boundary problem we need the following lemma, which can be proved by Green formula.

Lemma 1. For function F the following equality holds:

F (λ, ω, θ; qj) = −λ

2
(θ − ω)2

∫
Ω

exp(−i
√
λ(θ − ω)x)dx−

∫
Ω

exp(−i
√
λ(θ − ω)x)qj(x)dx−

−
∫
S

δ(x) exp(−i
√
λ(θ − ω)x)dSx −

∫
Ω

qj(x) · (−△+ qj − λ)−1(qjφλ,ω)(x) · φλ,−θ(x)dx.

Consider the sequences of the form√
ln = n+ i, ωn = cnη − ξ(2n)−1,

θn = cnη + ξ(2n)−1, cn = (1− |ξ|2(4n2)−1)
1
2 , n = 1, 2, ..., (3)

where η ∈ SN−1 and ξ is an arbitrary �xed element RN , ξ ̸= 0, and (η, ξ) = 0. In these
sequences we obtain the limit equality:

lim
n→∞

F (ln, θn, ωn; q) = −|ξ|2

2

∫
Ω

exp(−ix · ξ)dx+

∫
Ω

exp(−ix · ξ)q(x)dx. (4)

In the future we will use (4) to prove theorems about the uniqueness of the recovery of
potential in the Robin problem.

Consider problem (2) with potentials q1, q2 ∈ C∞(Ω). Let us prove the theorem..

Theorem 1. Let q1, q2 be real functions of C∞(Ω) such that for some natural number
T > 0 for the Robin problems (1) the following conditions holds:

1. ∀t ∈ N Ut(q1)|S = Ut(q2)|S;
2. ∃T ∈ N ∀t ≥ T µt(q1) = µt(q2).

Then q1(x) = q2(x) for all x ∈ Ω.

Proof.
The kernel of the Dirichlet operator formally is given by an equality [3]:

kerD(x, y) =
∞∑
t=1

ut(qj)(x)ut(qj)(y) · (µt(qj)− λ)−1, x, y ∈ S,
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where kerD(λ, q1) − kerD(λ, q2) makes sense as an operator in L2(S × S). Consider a
di�erence

kerD(λ, q1)− kerD(λ, q2) =

=
∞∑
t=1

ut(q1)(x)ut(q1)(y) · (µt(q1)− λ)−1 −
∞∑
t=1

ut(q2)(x)ut(q2)(y) · (µt(q2)− λ)−1.

For the sequence de�ned by the equalities (2), we have

lim
n→∞

∥D(ln, q1)−D(ln, q2)∥ ·
∥∥∥∂φln,ωn

∂ν
− δφln,ωn

∥∥∥
L2(S)

·
∥∥∥∂φln,−θn

∂ν
− δφln,−θn

∥∥∥
L2(S)

= 0. (5)

Therefore, using the equality (3), we claim that

lim
n→∞

|F (ln, θn, ωn; q1)− F (ln, θn, ωn; q2)| = 0. (6)

And, therefore, q1(x) = q2(x) for all x ∈ Ω. Indeed, then∫
Ω

exp(−ix · ξ)q1(x)dx =

∫
Ω

exp(−ix · ξ)q2(x)dx.

Thus, the potential of problem (1) is uniquely determined, if there is no a �nite number
of spectral data.

2
The validity of the mathematical model of recovery of potential (MRP) in the Robin

problem follows from this theorem.
MRP 1. Let Ω � be bounded domain in RN (N ≥ 2) with boundary S of class C∞.

Suppose that in the problem (1) the following values are known: a potential q1, eigenvalues,
with the exception, perhaps, of a �nite set of them, and values of eigenfunctions on the
boundary S. Suppose that the following conditions holds for problem (1) with potential
q2:

1. ∀t ∈ N Ut(q1)|S = Ut(q2)|S;
2. ∃T ≥ P ∀t ≥ T µt(q1) = µt(q2),

then for all x from Ω an equality q1(x) = q2(x) holds.

2. Theorem about the Uniqueness of the Recovery of Potential,
when the Character of the Asymptotic Expansion of Eigenvalues
is Known

Suppose that for t → ∞ the eigenvalues of problem (1) have the asymptotic

µt = C1 · t2/N + o(t1/N+γ), where 0 < γ <
1

N
, C1 > 0. (7)

In this case, the following statement holds [4]:

for |n− tk| > C · tβk > 0, where 1− 1

N
< β ≤ 1, we have

|µn(qj)− µtk(qj)| ≥ const ·max{tk, n}β > 0,
|µn(q1)− µtk(q2)| ≥ const ·max{tk, n}β > 0.

(8)
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Let natural t0 be such that µt0(q1) = µt0(q2). We set ln0 = n2
0 − 1 + 2n0i, where

n0 = [
√
µt0(q1)− 1]. For potential q ∈ C∞(Ω) of problem (1) an estimate is obtained [14]:

∥ut(q)∥L2(S) ≤ C0|µt(q)|
N
4 .

Let us consider potentials q1, q2, such that the more stringent conditions for them hold,
for example, in two dimension case:

∥ut(qj)∥L2(S) ≤ C4t
1
N , C4 > 0. (9)

We estimate the operator norm

∥ kerD(λ, q1)− kerD(λ, q2)∥ ≤

≤
∞∑
t=1

|µt(q2)− µt(q1)| · |µt(q1)− λ|−1 · |µt(q2)− λ|−1 · ∥ut(q1)(x)∥2L2(S)
+

+
∞∑
t=1

∥ut(q1)(x) · ut(q1)(y)− ut(q2)(x) · ut(q2)(y)∥L2(S×S) × |µt(q2)− λ|−1 ≡ S1 + S2.

Suppose that for ε > 1 +
4

3N
the condition

p0 = lim
t→∞

tε|µt(q2)− µt(q1)| < ∞ (10)

is true. Then from (7) we get

S1t
2/N
0 ≤ const

∞∑
t=1

|µt(q1)− µt(q2)|t
2
N t

2/N
0

|µt(q1)− µt0(q1)− 2ni| · |µt(q2)− µt0(q1)− 2ni|
≡

≡
∑

|t−t0|≤C2·tβ0

+
∑

|t−t0|≥C2·tβ0>0

.

One can evaluate each sum, using (7)�(10), and show lim
t0→∞

S1t
2
N
0 = 0.

Consider sum S2. Suppose that for δ > 1 +
1

2N
the condition

lim
t→∞

tδ∥ut(q1)(x)ut(q1)(y)− ut(q2)(x)ut(q2)(y)∥L2(S×S) < ∞

holds. Similarly we get that lim
t0→∞

S2t
2
N
0 = 0. Therefore (4) holds. Therefore, we claim that

the functions q1 and q2 equal for all x from Ω.
The following theorem follows from all stated above.

Theorem 2. Suppose that in Robin problems (1) the potentials q1 and q2 in Ω such that

µt(qj) = C1 · t2/N + o(t
1
N
+γ), 0 < γ <

1

N
, C1 > 0;

∥ut(qj)∥L2(S) ≤ C2 · t1/N , C2 > 0, (j = 1, 2).
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Suppose ε > 1 +
4

3N
and δ > 1 +

1

2N
such that

lim
t→∞

tε|µt(q2)− µt(q1)| < ∞,

lim
t→∞

tδ∥ut(q1)(x)ut(q1)(y)− ut(q2)(x)ut(q2)(y)∥L2(S×S) < ∞

exist. Then q1 and q2 coincide everywhere on Ω.
On the basis of this theorem we have the following
MRP 2. Let Ω be bounded domain in RN (N ≥ 2) with boundary S of class C∞. Let

in problem (1) the potential q1 is known and conditions

µt(q1) = C1 · t2/N + o(t
1
N
+γ), 0 < γ <

1

N
, C1 > 0;

∥ut(q1)∥L2(S) ≤ C2 · t1/N , C2 > 0

hold. Suppose that for problem (1) with potential q2 the conditions

µt(q2) = C1 · t2/N + o(t
1
N
+γ), 0 < γ <

1

N
, C1 > 0;

∥ut(q2)∥L2(S) ≤ C2 · t1/N , C2 > 0,

hold, there exist ε > 1 +
4

3N
and δ > 1 +

1

2N
, such that

lim
t→∞

tε|µt(q2)− µt(q1)| < ∞,

lim
t→∞

tδ∥ut(q1)(x)ut(q1)(y)− ut(q2)(x)ut(q2)(y)∥L2(S×S) < ∞.

Then q1 and q2 coincide everywhere on Ω.

Conclusion

We obtained the theorems about the uniqueness of the recovery of potential for the
inverse Borg � Levinson problem with boundary Robin conditions by incomplete spectrum
with a given asymptotics. Models of recovery of potential were formulated on the basis of
presented theorems. Further development of this problem may be the proof of theorems
about the uniqueness of recovery of potential by incomplete spectrum, when there exist no
an in�nite number of spectral data, the more so that this quastion was already considered
for the problem with the Dirichlet boundary conditions. It should focus on the theorems
about existence.
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ÈÑÑËÅÄÎÂÀÍÈÅ ÂÎÏÐÎÑÀ ÅÄÈÍÑÒÂÅÍÍÎÑÒÈ
ÂÎÑÑÒÀÍÎÂËÅÍÈß ÏÎÒÅÍÖÈÀËÀ ÏÎ ÑÏÅÊÒÐÓ
Â ÎÁÐÀÒÍÎÉ ÇÀÄÀ×Å ÁÎÐÃÀ � ËÅÂÈÍÑÎÍÀ
Ñ ÊÐÀÅÂÛÌÈ ÓÑËÎÂÈßÌÈ ÐÎÁÅÍÀ

Ë.Â. Ñìèðíîâà

Â ñòàòüå ðàññìàòðèâàåòñÿ îáðàòíàÿ çàäà÷à Áîðãà � Ëåâèíñîíà ñ êðàåâûìè óñëî-

âèÿìè Ðîáåíà, äëÿ êîòîðîé ôîðìóëèðóþòñÿ óñëîâèÿ åäèíñòâåííîñòè âîññòàíîâëåíèÿ

ïîòåíöèàëà ïî ñïåêòðó. Ïîäîáíàÿ çàäà÷à, íî ñ êðàåâûìè óñëîâèÿìè Äèðèõëå, äîñòà-

òî÷íî ïîëíî èçó÷åíà. Èçâåñòíî, ÷òî ìîæíî îòáðîñèòü êîíå÷íîå ÷èñëî ñïåêòðàëüíûõ
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äàííûõ â îáðàòíîé çàäà÷å Áîðãà � Ëåâèíñîíà ñ êðàåâûìè óñëîâèÿìè Äèðèõëå è ýòî íå

âëèÿåò íà åäèíñòâåííîñòü âîññòàíîâëåíèÿ ïîòåíöèàëà. Â ïðåäñòàâëåííîé ñòàòüå äîêà-

çûâàåòñÿ, ÷òî òåîðåìà, ïîëó÷åííàÿ äëÿ êðàåâûõ óñëîâèé Äèðèõëå, ñïðàâåäëèâà è äëÿ

çàäà÷è ñ êðàåâûìè óñëîâèÿìè Ðîáåíà. Äëÿ ýòîãî äîêàçûâàþòñÿ òåîðåìû åäèíñòâåííî-

ñòè âîññòàíîâëåíèÿ ïîòåíöèàëà â îáðàòíîé çàäà÷å Áîðãà � Ëåâèíñîíà êðàåâûìè óñëîâè-

ÿìè Ðîáåíà, äàåòñÿ îòâåò íà âîïðîñ, â êàêîì ñëó÷àå äàííàÿ çàäà÷à èìååò åäèíñòâåííîå

ðåøåíèå, åñëè èçâåñòåí õàðàêòåð àñèìïòîòè÷åñêîãî ðàçëîæåíèÿ åå ñîáñòâåííûõ ÷èñåë.

Íà îñíîâå ýòîãî ïðåäëîæåí ïîäõîä ê ñîçäàíèþ ìàòåìàòè÷åñêîé ìîäåëè âîññòàíîâëåíèÿ

ïîòåíöèàëà â îáðàòíîé çàäà÷å Ðîáåíà.

Êëþ÷åâûå ñëîâà: îáðàòíàÿ çàäà÷à Áîðãà � Ëåâèíñîíà; ñîáñòâåííûå ÷èñëà; ñîá-

ñòâåííûå ôóíêöèè; êðàåâûå óñëîâèÿ Ðîáåíà.
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