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The main aim of this work is solving the problem of hard and optimal control of

solution to the initial-finial problem for nonstationary Sobolev type equation. We construct

a solution to the initial-final problem for the nonstationary equation and show that a unique

optimal control of solutions to this problem exists.

Apart from the introduction and bibliography, the article consists of three sections. The

first section provides the essentials of the theory of relatively p-bounded operators. In the

second section we construct a strong solution to the initial-final problem for nonstationary

Sobolev-type equations. The third section contains our proof that there exists a unique

optimal control of solutions to the initial-final problem.

Keywords: optimal control; initial-final problem; Sobolev-type equations; relatively

bounded operator.

Introduction

Suppose that X, Y, and U are Hilbert spaces, and then take bounded linear operators
L ∈ L(X;Y) and B ∈ L(U;Y), assuming that the kernel of L is non-trivial. Take also
a closed linear operator M ∈ Cl(X;Y) whose domain is dense in X.

Consider the Sobolev-type equation [1–4]

Lẋ(t) = a(t)Mx(t) + Bu(t) (1)

with a control vector function u : [0, τ ] → U and a scalar function a : [0, τ ] → R+, to be
specified later, characterizing the change in time of the parameters of (1). The operators
L and M generate the analytic resolving group for the homogeneous stationary equation
(1), which means that a(t) ≡ 1.

We consider an optimal control problem for (1). Namely, we aim to find a pair
(x̂, û) ∈ X× Uad with

J(x̂, û) = inf
(x,u)∈X×Uad

J(x, u). (2)

Here Uad is a closed convex set of admissible controls in the Hilbert space U of controls,
all pairs (x, u) satisfy the initial-final problem [5] for (1), and J(x, u) is a certain penalty
functional in special form.

Previously the authors studied the optimal control problem for solutions to non-
stationary Sobolev-type equations (1) with the Showalter–Sidorov condition. In this
paper we study the optimal control of solutions to the initial–final problem [5], which
is a generalized Showalter–Sidorov problem for (1).
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1. Relatively Spectrally Bounded Operators

Recall the standard notation of the theory of relatively p-bounded operators [3].
Starting with two Hilbert spaces X and Y, take a bounded linear operator L ∈ L(X;Y)

with non-trivial kernel and a closed linear operator M ∈ Cl(X;Y) whose domain is dense
in X. Consider the stationary equation

Lẋ(t) = Mx(t) + f(t), (3)

called a Sobolev-type equation [3].
The sets

ρL(M) = {µ ∈ C : (µL−M)−1 ∈ L(Y;X)} and σL(M) = C \ ρL(M)

are called the L-resolvent set and the L-spectrum of M respectively.
The operator-valued functions (µL − M)−1, RL

µ(M) = (µL − M)−1L, and
LL
µ(M) = L(µL−M)−1 are respectively called the resolvent, right resolvent, and left

resolvent of M with respect to L (or briefly the L-resolvent, right L-resolvent, and left
L-resolvent of M).

Lemma 1. Let operators L ∈ L(X;Y) and M ∈ Cl(X;Y). Then the L-resolvent, right
and left L-resolvents of M are analytic on ρL(M).

Definition 1. An operator M is called spectrally bounded with respect to

an operator L (or briefly (L, σ)-bounded) whenever

∃r0 > 0 ∀µ ∈ C (|µ| > r0) ⇒ (µ ∈ ρL(M)).

Put γ = {µ∈C : |µ| = r > r0}. The integrals of F. Riesz type

P =
1

2πi

∫

γ

RL
µ (M) dµ, Q =

1

2πi

∫

γ

LL
µ(M) dµ

exist by Lemma 1 for every (L, σ)-bounded operator M . The operators P ∈ L(X) and
Q ∈ L(Y) are projections [3]. Put X0 = kerP , Y0 = kerQ, X1 = imP and Y1 = imQ.
Denote the restriction of L (M) to Xk by Lk (Mk) for k = 0, 1.

Theorem 1. The following claims hold for every (L, σ)-bounded operator M :
(i) the operators Lk,Mk : X

k → Yk for k = 0, 1;
(ii) the operators M0 ∈ L(X0;Y0) and M1 ∈ Cl(X1;Y1);
(iii) there exists operators L−1

1 ∈ L(Y1;X1) and M−1
0 ∈ L(Y0;X0);

(iv) there exist analytic resolving operator groups {X t ∈ L(X) : t ∈ R} for the
homogeneous equation (3) and {Y t∈L(Y) : t∈R} for the equation

RL
β (M)ẏ(t)=M(βL−M)−1y(t),

where β∈ρL(M), which are of the form

X t = etL
−1

1
M1P =

1

2πi

∫

γ

RL
µ(M)eµtdµ and Y t = etM1L

−1

1 Q =
1

2πi

∫

γ

LL
µ(M)eµtdµ

respectively.
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Theorem 1 implies the existence of the operators H = M−1
0 L0 ∈ L(X0) and

S = L−1
1 M1 ∈ L(X1).

An (L, σ)-bounded operator M is called (L, 0)-bounded whenever the point ∞ is
a removable singularity of the L-resolvent of M , that is, H ≡ O; (L, p)-bounded whenever
the point ∞ is an order p ∈ N pole of the L-resolvent of M , that is, Hp 6= O and Hp+1 ≡ O;
(L,∞)-bounded whenever the point ∞ is an essential singularity of the L-resolvent of M ,
that is, Hq 6= O for all q ∈ N.

2. Solvability of the Initial-Final Problem

Take two Hilbert spaces X and Y. For two operators L ∈ L(X;Y) and M ∈ Cl(X;Y),
where M is (L, p)-bounded for p ∈ {0} ∪ N.

Let the relative L-spectrum of operator M can be represent as

σL(M) = σL
1 (M) ∪ σL

2 (M), where σL
1 (M) ∩ σL

2 (M) = ∅.

Define the operators Pj ∈ L(X) and Qj ∈ L(Y) as

Pj =
1

2πi

∫

γj

RL
µ(M)dµ, Qj =

1

2πi

∫

γj

LL
µ(M)dµ, j = 1, 2.

These operators are projectors by the relatively spectral theorem [8], and moreover, the
results of [8]. Put X1

j = imPj and Y1
j = imQj for j = 1, 2.

Consider the initial-final problem

P1(x(0)− x0) = 0, P2(x(τ)− xτ ) = 0 (4)

for (3). Applying to (3) the projections I−Q and Qj for j = 1, 2 we obtain the equivalent
system











Hẋ0 = x0 +M−1
0 f 0,

ẋ1
1 = S1x

1
0 + L−1

11 f
1
1 ,

ẋ1
2 = S2x

1
τ + L−1

12 f
1
2

(5)

where H = M−1
0 L0 ∈ L(X0) is a degree p ∈ {0} ∪ N nilpotent operator, the operators

Sj = PjS ∈ L(X1
j) and L−1

1j = PjL
−1
1 ∈ L(Y1

j ;X
1
j), j = 1, 2.

Put N0 ≡ {0} ∪ N and construct the space

Hp+1(Y) = {ξ ∈ L2(0, τ ;Y) : ξ(p+1) ∈ L2(0, τ ;Y), p ∈ N0}

which is a Hilbert space with the inner product

[ξ, η] =

p+1
∑

q=0

τ
∫

0

〈

ξ(q), η(q)
〉

Y
dt.

Definition 2. A vector-valued function x ∈ H1(X) is called a strong solution to
the initial-final problem (3), (4) whenever it satisfies (3) and the terms of (4) almost
everywhere.

2015, vol. 2, no. 1 41



A.D. Badoyan

Theorem 2. Let operator M (L, p)-bounded, p ∈ {0} ∪ N, then for any vector-functions
x0, xτ ∈ X, vector-function u ∈ Hp+1(U) and scalar function a ∈ Cp+1([0, τ);R+) separated
from zero there exists a unique solution x ∈ H1(X) for problem (3), (4):

x(t) = −

p
∑

q=0

HqM−1
0 (I −Q)

(

1

a(t)

d

dt

)k
Bu(t)

a(t)
+

+X
A(t)
1 x0 +

t
∫

0

X
A(t)−A(s)
1 L−1

1 Q1Bu(s)ds−

−X
A(τ)−A(t)
2 xτ −

τ
∫

t

X
A(t)−A(s)
2 L−1

1 Q2Bu(s)ds

(6)

with the replacement A(t) =

t
∫

0

a(ζ)dζ

3. Optimal Control of the Problem

For a Hilbert space X consider the equation

Lẋ(t) = a(t)Mx(t) +Bu(t) (7)

with operators L ∈ L(X;Y), M ∈ Cl(X;Y), and B ∈ L(U;Y), a scalar function
a : [0, τ) → R+, as well as vector functions u : [0, τ) → U to be specified later.

Take a Hilbert space Z and an operator C ∈ L(X;Z). Consider the penalty functional

J(u) = α

1
∑

q=0

τ
∫

0

‖z(q) − z
(q)
d ‖2Zdt+ (1− α)

k
∑

q=0

τ
∫

0

〈

Nqu
(q), u(q)

〉

U
dt, z = Cx, (8)

where 0 ≤ k ≤ p + 1. The operators Nq ∈ L(U) for q = 0, 1, . . . , p+ 1 are self-adjoint and
positive definite, while zd = zd(t, s) is an observation from some space of observations Z.
Note that if x ∈ H1(X) then z ∈ H1(Z). By analogy with Hp+1(Y), define the space
Hp+1(U), which is a Hilbert space because so is U. We distinguish a convex and closed
subset H

p+1
ad (U) of the space Hp+1(U), called the set of admissible controls.

Note that α ∈ (0, 1] and (1 − α) are weights goals of optimal control. Its describe
achievement the targets observed value without abrupt changes (the first term in (8))
and minimize the resources expended to control (the second term in (8)). If α = 1 in
the functional (8) second term vanishes and we get a hard control problem, that is, when
optimization of achieving the goal is not interested in the cost of expended resources [8].

Definition 3. A vector function v ∈ H
p+1
ad (U) is called an optimal control of solutions

to problem (4), (7) whenever

J(v) = min
(x(u),u)∈X×H

p+1

ad
(U)

J(u), (9)

where the pairs (x(u), u) ∈ X×H
p+1
ad (U) satisfy (4), (7).
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By Theorem 2, a unique solution x ∈ H1(X) to problem (4), (7) exists for all vectors
x0, xτ ∈ X, u ∈ Hp+1(U) and a function a ∈ Cp+1([0, τ);R+) separated from zero.

We now fix x0, xτ ∈ X for and consider (6) as a mapping D : u → x(u).

Lemma 2. Given Hilbert spaces X, Y, and U, take an (L, p)-bounded operator M with
p ∈ N0, a function a ∈ Cp+1(R+;R+) separated from zero, and fix vectors x0, xτ ∈ X. Then
the mapping D : Hp+1(U) → H1(X) defined by (6) is continuous.

Proof.
Since B ∈ L(Hp+1(U);Hp+1(Y)) and (6) is the solution to (7), this lemma holds by

the properties of the operator group X t and the continuity of a(t) for t ∈ R+, by analogy
with the proof of Theorem 2.

✷

Theorem 3. Take an (L, p)-bounded operator M with p ∈ N0 and a function
a ∈ Cp+1([0, τ);R+) separated from zero. Then for arbitrary vectors x0, xτ ∈ X and zd ∈ Z,
there exists a unique solution v ∈ H

p+1
ad (U) to the optimal control problem (4), (7)–(9) with

α ∈ (0, 1).

Proof.
Using the mapping D of Lemma 2, we see that the functional (8) becomes

J(u) = ‖Cx(t; u)− zd‖
2
H1(Z) + [η, u],

where η(k)(t) = Nku
(k) for k = 0, . . . , p+ 1. Therefore,

J(u) = π(u, u)− 2θ(u) + ‖zd − Cx(t; 0)‖2H1(Z),

where π(u, u) = ‖C(x(t; u)−x(t; 0))‖2
H1(Z)+[η, u] is a coercive continuous bilinear form

on Hp+1(U), and
θ(u) = 〈zd − Cx(t; 0), C(x(t; u)− x(t; 0))〉H1(Z)

is a continuous linear form on Hp+1(U). Thus, the theorem is valid by analogy with [6].

✷

Corollary 1. . Take an (L, p)-bounded operator M with p ∈ N0 and a function
a ∈ Cp+1([0, τ);R+) separated from zero. Then for all vectors x0, xτ ∈ X and zd ∈ Z,
there exists a unique solution v ∈ H

p+1
ad (U) to the hard control problem (4), (7)–(9) with

α = 1.
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