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The theory of holomorphic degenerate semigroups of operators was constructed earlier
in Banach spaces and Frechet spaces. However, examples of study of mathematical objects
show the necessity of their consideration in more general cases. In this article the theory of
holomorphic degenerate semigroups of operators is transferred to quasi-Sobolev spaces of
sequences which are quasi-normed and even quasi-Banach spaces.

The article besides the introduction and references contains two paragraphs. In the first,
resolving analytic degenerate semigroups are constructed. The second paragraph includes
the study of kernels and images of analytic semigroups.
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Introduction

Let Y and § be quasi-Banach spaces, operators L € L(;F) and M € CI(LL;F).
Consider an L-resolvent set p*(M) = {u € C: (uL— M)t € L(;F)} and an L-spectrum
ol(M) = C\p"(M) of an operator M. It is easy to see that, the set pZ(M) is always open,
therefore the L-spectrum of operator M is always closed. Define RE(M) = (aL—M) 'L
and LE(M) =L(aL—M)™" as right and left L-resolvents of operator M.

Consider equations

RE(M)i = (oL — M) Mu (1)

and

LY(M)f = M(aL — M)~ f (2)
for a € pl(M), which are equivalent to a linear Sobolev type equation
Lu = Mu. (3)
They can be considered in the framework of equation
Av = B, (4)

where operators A € U, B € CI(0), ¥ is a quasi-Banach space. Our goal is to construct
and study the properties of holomorphic degenerate operator semigroups resolving Sobolev
type equation of the form (4).

The mapping V' € C(R; L()) is called a semigroup of operators if for all s, € R,

VEVi=y, (5)
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The semigroup {V*: t € R, } is called holomorphic if it can be analitically continued
to some sector of complex plane containing half axis R, preserving property (5). A
holomorphic semigroup is called degenerate if its unit P=s—lim;_,o, V' is a projector
in 0.

Firstly holomorphic degenerate semigroups appeared in [1] as resolving semigroups for
evolution Sobolev type equation (3) in Banach spaces. Explicit theory of such semigroups
can be found in [2]. These results were stread to locally convex spaces [3].

Interest in Sobolev type equations has recently increased significantly [4-6], moreover,
there arose a necessity for their consideration in quasi-Banach spaces. The need is dictated
not so much by the desire to fill up the theory but by the aspiration to comprehend non-
classical models of mathematical physics in quasi-Banach spaces [7, 8]. Our goal is to
spread these ideas to one class of evolution Sobolev type equations in quasi-Banach spaces
of sequences.

1. Resolving Analytic Degenerate Semigroups

Definition 1. A solution of (4) will be a function v(t) € C*(Ry;Y), satisfying this
equation.

Definition 2. The semigroup V* € C*(R; L(D)) is called a resolving operator semigroup
of equation (4), if

(1) VsVE=Vstt Vst e Ry;

(ii) for any vy € U a function v(t) = Vg will be a solution of this equation.

Remark 1. Availability of the unit of semigroup is not postulated.
The semigroup {V*:t € R, } is called uniformly bounded, if
IM >0 V>0 |V < M;

analytic, if it is analytically continued in some sector, containing a ray R,.
Let here and in the next 5.1:62”2“, =0, m e R, g € Ry, Q,(N\) = D1 ,aN,

: q
Ry (\) = >7;_od;N be polynomials with real coefficients, with no common roots, and
of degrees n um s, respectively, where n < s and dsc, < 0. Construct operators

Theorem 1. Let operators L, M be defined as in the above, where Re p < 0. Then there
exists analytic in the sector {T € C: |arg7| <0 —x/2, 7 # 0}, where § € (7/2;7), and
uniformly bounded resolving semigroup {U* : t € Ry}  ({F':t € R.}) of equation (1)
((2)), and it is defined by Dunford-Taylor integrals

1
Ut = 5= RY(M)edp (6)
r
t 1 L wt
r

where the contour I satisfies the condition:

I c S§(M), argpu — £60  when |u| — oco. (8)
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Remark 2. If we ignore the constraint Re p, < 0 (in the case a constant a # 0 in the
definition of L-sectoriality [7]), then the semigroup of equation Li = Mu will be

1
Wt = eatUt = %/Rﬁ(M)e(“Jr“)td,u 't e R+
T

Accordingly, for this semigroup instead of uniformly boundedness there will be exponential
estimation
Vit >0 /;(L[)HWtH < Me".

Proof.
1
P = e [ READEdu) e <
r
/
< Cet(30 M| < ey > [T 7 |1)11 =
/
_ Oe(a—i—maxReuk)t(Z’ < u, e > |q . (Ak>m§2nq)1/q §7
< Ce(aeraxRe,uk)t . m+2nHuH
J— q .
Hence,

VE>0 )W < Ce™.

O
Remark 3. If the degrees of polynomials n = s, then an operator M (L, o)-bounded,
and oo is a removable singular point or a pole of order p of L-resolvent of operator M.
Then a semigroup (6),(7) is continued to analytical group.

Remark 4. Under the conditions of Theorem 1, the following relations:
LU = F'Lu Yu €y,
MU' = F'Mu Yu € domM Vte R,
are obvious.

From the formulas (6),(7) of resolving semigroups for equations (1), (2), seeing that
the operators have nontrivial kernels, we have ker U* O ker R[(M), ker F* > ker L/, (M)
VteR,.

2. Kernels and Images of Analytic Semigroups
Definition 3. The set
ket Ve ={peW:IH R, Vip=0)

is called a kernel of the analytic semigroup {V*':t € R, }.
The set
imV*={veY: lim Vv =0}
t—0+
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1s called an tmage of the semigroup.

Remark 5. From the analyticity of the semigroup we have ker V* = ker V! Vt € R,.
Indeed, by the definition ker V* = J ker V. Claim that ker V% = ker V2 Vty > t; > 0.

£>0
Since V¥ = V=tyh then ker V%t C ker V2. Let v € ker V2, consider the function

v(t) = V. Tt is analytic in the sector, containing R, and equal to zero when t > ;. By
the theorem about uniqueness of the analytic function we get v(¢) = 0 in the entire sector.
The last remark shows that the kernel of the analytic semigroup is a subspace.

Lemma 1. For the analytic semigroup {V*' :t € R} we have ker V* NimV*® = {0}.

Proof.
Let v € ker V*NimV®. Then by remark 5Vt > 0 V'v = 0. Therefore v = 2‘/lir& Viv =0.
—

O
Denote 4° = ker U®, F° = ker F* and by Ly, (M;) define restriction of the operator
L (M) onto &° (%N domM).

Lemma 2. Under the conditions of Theorem 1 operators Ly € L(ker U®;ker F*),
My : ker U®* N domM — ker F°.

Proof.
From Remark 4 it follows that if U'u = 0 then 0 = LU = F*Lu (0 = MU'vw = F*Mu)
vVt € Ry Vu € U (Vu € domM).

O
By ol (M) define an Ly-spectrum of operator M.
Lemma 3. Under the conditions of Theorem 1 of(M) = {oo}.
Proof.
Take A € C. Consider the operator
_ < -, ep >
(\Lo—Mo) ™' = . (9)
A Eker Q AQ(Ak) — B(Ae)
For f € §° we have
— < f,ex >
MU\ Lo — M 1 _m ’ <

A Eker Q

< E J m \1/q <
A Eker Q

| < f, €L > |q X
: C m q /q <
- (Akezke:rQ |/\Q()‘k) — R()\k)’q q HekH ) <

1 m
< C' max (22N < const ™| f]|.
=Y it NOOW) — RN )|(Ak§erQ|f’€| (k)27 < bl
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Consequently, operator (9) is bounded. Let ¢ € 4°. Then

Z < (/\L() — Mg)go, e >

€ =
LA T AQ0w) — ROW)

< Z (/\Q(/\j) — R()\])) < P, €; > €j, ek >

A, eker Q
Z AQ(Ax) — R(A)

A Eker Q

€ =

()\Q()\k) — R()\k)) < @, e > .
2. AQOw) — ROWw) k=

A Eker Q

Z < Y, ep > e = Q.
A Eker Q

Similarly, for f € §° it can be shown that

< f,er > B
(ALo = Mo) Ak;ﬂQ AQ(n) — ROw) ™~ ,

Consequently, operator (9) is an inverse to ALy — My. A contour I', which satisfies (8), by
using the analyticity of below integrand functions, can be choosen lying "to the right" of
the points A. Then for any ¢ € ker U* NdomM, f &€ kerF*, teR,

1 L— M) et
—./w ) L — M)y =

2mi w—A
I
1 / “ A)t 1 ( L M)—lL (p—=A)t du = —)\tUt _
2mi )\ dn =g | e odp = —e"Up = o,
I I
1 (L — M)~ teln=Nt
AL — M)— di —
(L - M [ SR
I
1 e(H*A)t e~ B B
o | Sy tdn =Gy [ L= M)l = = f
T T

by the Cauchy theorem.
Thus, VA € C there exists an operator

(ALo — My) ™' € L(F%u°).

O
Corollary 1. Under the conditions of Theorem 1 there exists an operator

Myt e L(F0uU0).

Proof.
It is sufficient to take in the previous lemma A\ = 0. In this case

(Mo)™! = Z %%- (10)

Mg Eker Q R )\k)
O
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Theorem 2. Under the conditions of Theorem 1 ker RL(M) = 4%, ker L);(M) = §°.

Proof.

Take ¢ € ker RL(M) \ {0}, i.e. ¢ is an eigenfunction of operator L. It is clear that
the eigenfunction, according to (6), belongs to ker U®. So, ker R};(M) C ker U®. Let us
prove the inverse inclusion. Consider the vector 1) = R[;(M )¢, where ¢ € ker U®. By using
Lemmas 2 and 3, ¢» = R°(My)p € ker U®, therefore by Lemma 1

_ t . pL
0= Jim U = = RE(M)gp.

Thus, the vector ¢ € U°. Consequently, ker Rﬁ(M ) = o

Now take f € ker L”,(M). Then f = M, where ¢ € ker L’;(M) N domM. By Remark
5 we get V& € Ry

F'f = FtMy = MU' = M0 = 0.

Thus, f € ker F*, §° C ker F*.

Now let f € ker F*, then M f = ¢ € ker U® = ker LL(M). Therefore

LE(M)f = LE(M)Mop = MRL(M)p = 0.

O
Remark 6. Under the conditions of Theorem 1 operators H = My 'Ly and J = LoM;™*

are equal to Q.

Lemma 4. Under the conditions of Theorem 1 Yu € imRy(M) (Vf € imL%(M))
lim Ulu =u (lim F'f = f).
t—0+ t—0+

Proof.
Take an arbitrary vector u = Rﬁ(M Ju, u € SE. By using the L-resolvent identities

(1= N RY (M) Ry (M) = Ry (M) — Ry (M),

(1 — L (L) = LEar) - Lh), (1)
then .
Uy = 5 / RY(M)eMdAR) (M)v =

v oy oy L[ M
e d/\+R#(M)2m,/>\_Md>\,

T 2mi w—A
r
while the second integral on the right is equal to zero by the Cauchy theorem. Letting
t — 04, we get
1 RE(M
lim Uty = — / BYDY 0\~ REOM)w = u,
=0+ 271 W= A H
r

as the latter integral is equal to a deduction function RY(M)v (around the contour in the
negative direction).
(The claim about semigroup {F": ¢ € R} is proved similarly.)
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The closure of image imR};(M) (imL%(M)) right (left) L-resolvent in the normed
space 4 (§) is denoted by U ().

Theorem 3. Under the conditions of Theorem 1imU® = Ut imF*® = F.

Proof.
According to Lemma 4, imR[ (M) C imU®. And as the limit lim U'u = u exists on

t—0+
the dense in U4! lineal imRﬁ (M), then using Banach — Steinhaus theorem for uniformly

bounded semigroup implies the existence of this limit in a whole {!, i.e. 4! C imU®.
According to the Cauchy theorem and the L-resolvent identity

= 5= / RY(M)eMud\ = 5 / RY(M)eMud
7TZ T

1 L At L / L At
27m_/RMO(M)e ud\ = 27mR (M) [ (po — N)RY(M)e ud
T T

Vo € pb(M). Thus, Vt >0 imU? C imR(LH’p)(M). This means, imU*® C 4.
Affirmation about the image of semigroup imF'*® is proved similarly.

O
Consequently, the images of the semigroups are subspaces, and we can define operators

) MIZM

1NdomM

Lemma 5. Under the conditions of Theorem 1 Ly € L(4';F1).

Proof.
Let u = lugﬁr Utw. Then, by the continuity of the operator L and Remark 5
t—

Lu=1L hm Ulu = lim LU = hm FtLu

t—0+

that was required.

Remark 7. By Lemma 1 and Theorems 2 and 3
PNt ={o0}, Fng ={0}.
Introduce the notation:
U=, §=3 a3,

V>0 Ul=U" Ft = Ft

4 3

Lemma 6. Under the conditions of Theorem 1

U=y, =5z

16 Journal of Computational and Engineering Mathematics



COMPUTATIONAL MATHEMATICS

Proof.

We must show that the operator P = s — thnﬁr Ulis a projector. It is continuous due
%

to the Banach-Steinhaus theorem as semigroup is uniformly bounded, and the set £00 @ (!,
which obviously defined by P by Theorems 1 and 2, is dense in the space §l.
Further, from the continuity of the operator P we get

Vu el P?u=P lim P(u) 4+ ui) = P lim up

k—o0 k—o0

— lim Puji + hm Pul = Pu.

k—oo

Here u! € 4, [=0,1 )
For u € 40 Pu=0. Let u € ker P, i.e.

0= Pu= lim P(u) +u}) = hm Uy

k—o00

Therefore u = Jim uf € 4% as U° is closed.
— 00

By Theorem 2 §(' C imP. Take a vector u € imPN. Then, for some v € §{ u = Pu.
Taking into account the idempotency of the operator P we get

Pu = P* = Pv=u.
Hence imP C $('. For the space § lemma is proved similarly using a projector

) =5 — lim F*.
Q t—0+
O

~ By Theorems 2 and 3, Remark 5 and Lemma 6 it follows that for the semigroup
{Ut:teRy} ({F':teR,}) we can define the unit

UozP—s—thtEE(il) (F[):Q—s—hmFtéﬁ(g)

t—0+ t—0+

which will be a projector on 4! (F') along {0 (F°).
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O AdJPAX 11 OBPA3AX BbBIPO2K/IEHHBIX
AHAJINTNYECKNX PASPEHIAIOIIUX IIOJIVI'PVYIIII
B KBA3MCOBOJIEBBIX ITPOCTPAHCTBAX

Iotc. K.T. Aav Hcasu

Teopust TOTOMOPGHBIX BBIPOKIEHHBIX MTOJYTPYIII OMEPATOPOB ObLIa ITOCTPOEHA paHee
B 0AaHAXOBBIX IMPOCTPAHCTBaX U mpocrpaHcTBax Ppemre. OjHAKO, U3yveHHE MaTeMaTHYe-
CKUX OOBEKTOB KaK IPaBWJIO TpedyeT MaKCHMaJjbHOTO 0000INeHns Teopun. B crarbe Teo-
pust TOJIOMOP(HBIX BBIPOXKIEHHBIX HOJIYTPYIIT OIMEPATOPOB MEPEHOCUTCS B KBA3MCOOOJIEBBI
IIPOCTPAHCTBA MOCJIEIOBATEILHOCTE, KOTOPBIE sIBJISIOTCA KBA3MHOPMUPOBAHHBIME U OOJIee
TOTO, KBa3MOAHAXOBBIME [TPOCTPAHCTBAMH.

CraTbsi KpOMe BBEJIEHUS U CIICKa JIATEPATYPbI COJIEPXKUT JBa Haparpada. B nepsom,
CTPOSITCSI AHAJINTUYECKUE BBIPOXKIEHHBIE TIOJIyTIPYIIIbI, COJEpKalliasi HECKOJIBKO OIpe/Iesie-
HUIi, 3aMeYaHUil U TeOpEMBI CO CBOMMH JOKa3aTejJbCcTBaMu. Bropoit maparpad comepkur
u3ydeHue sjaep u o0pPa30B aHAIUTHIECKUX IIOJIyTDYIIIL.

Karouesvie caosa: adpa u 06pasve noAYepynn, GHAAUMUYECKUE GBIPOACOEHHBIE NOAY-
2pynnol, K6a3ubAGHATO8b, NPOCMPAHCNGA, KEA3UCOOOAEGDL NPOCTNPAHCNEA.
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