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ON ALGORITHM FOR NUMERICAL SOLUTION
OF OPTIMAL MEASUREMENT PROBLEM USING LINEAR
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We consider an algorithm for numerical solution of the optimal measurement problem
using linear splines. The optimal measurement problem, which is based on the model of
optimal control, is posed to restore the dynamically distorted signal. We propose to use a
mixed-control problem for Leontief type systems in the development of numerical algorithm
for solution of the optimal measurement problem. Furthermore, the use of linear splines
at one of the algorithm steps reduces the amount of machine time required to find an
approximate solution with a given accuracy.

Keywords: numerical algorithm of the optimal measurement problem; mixed control
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Introduction

The problem of the measured signal restoration is one of the most important problems
in the theory of dynamical measurements. The mathematical model of the measuring
device, the use of which allows to restore the dynamically distorted signals, was proposed
and substantiated by A.L. Shestakov [1-4|. Consider the system

&(t) = Ax(t) + Bu(t), (1)

y(t) = Cu(t), (2)

where matrices A,xn, Brnxn, Cnxm model a structure of the measuring device, a vector
function = = z(t) is a state of the measurement device, and a vector function u = u(t) is
an input signal, a vector function y = y(¢) models a signal at the output of the measuring
device. An approach, which gives more correct solutions and is based on the theory of
automatic control, was proposed by A.L. Shestakov and developed by his learners [5].
One propose to build the generator model in the measuring device. This generator model
generates signals, which are applied to the input of the measuring device. Note that such
problems appear, for example, when one corrects a position of a spacecraft, where reactor
engines, having small size, works over a very short time. Immediately after one switches
on the engines, a peak input signal can not be measured due to a mechanical inertia of
the measuring device. A.L. Shestakov, E.V. Soldatkina, M.N. Bizyaev, D.Yu. losiphov
technically proposed the hypotheses about the resolving of signal recovery problem and
realized them into engineering solutions [6-8|.

Then to solve the problem of dynamically distorted signal recovering A.L. Shestakov
and G.A. Sviridyuk proposed to use methods of optimal control theory and called the
problem thus obtained as a problem of optimal measurement [9].
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Using (1) — (2) one can get a model (3) with the initial condition (4), which in the
case of the reversibility of a matrix L is turned into the classical Cauchy condition.

Li(t) = M=z(t) + Nu(t), (3)
[RL(M)}F“ (2(0) — z9) = 0, (4)
= mi (t,u) — 29 )H dt, (5)

I, O A O
where z = col (x1,To, ..., Tn, Y1, Y2, -os Ym), L = <© @m), M = (C’ _Hm),

N = 0 0 ), Cz, Czy are simulated and observed values, which are used to restore
m

of the distorted signal, respectively.

The problem of measurement recovery by the output signal is to minimize a functional
(5), i.e. the smallest discrepancy between observed and simulated signal values, as well as
between their derivatives, is achieved.

Note that the using of Showalter — Sidorov condition for numerical researches of the
application problems does not require the agreement of the initial data. Notice that initial
data verification is very difficult under using of the initial Cauchy conditions and imposes
restrictions under the numerical solutions of optimal control problems. It allows to remove
restrictions on the size of the matrices, which are included in the system [10].

A.V. Keller, E.I. Nazarova are interested in the numerical solution of the problem of
optimal measurement with regard to the inertia of the measuring device. They considered
an algorithm for numerical solution of the dynamic measurement problem as a hard
optimal control problem [11]. Yu.V. Khudyakov, A.L. Shestakov proposed an algorithm
for the numerical solution of the problem of dynamically distorted signal recovering with
regard to an inertia as well as to resonances of a measuring device [12]. M.A. Sagadeeva
investigates an optimal measurement for the model of the measuring device with regard
to an determined multiplier effect [13].

G.A. Sviridyuk proposed to reduce such systems to the Leontief type equations,
the solution of which is developed in Chelyabinsk mathematical school [14]. Leontief
type equations are finite-dimensional analogue of the Sobolev type equations. An
optimal control problem for Sobolev type equations was first posed and investigated
by G.A. Sviridyuk and A.A. Efremov in [15, 16]. The existence of unique solution of
this problem with the initial Cauchy condition for the cases of relative boundedness and
relative sectorialness of an operator was proved in theese papers. In [17] N.A. Manakova
investigated sufficient conditions for the solvability of the optimal control problem for
some semilinear Sobolev type equations with the initial Showalter — Sidorov condition.
In addition, A.A. Zamyshlyaeva investigated the optimal control for higher-order Sobolev
type equations [18]. In [19] A.V. Keller and M.A. Sagadeeva proved an existence and
uniqueness of solutions of optimal control problem for non-stationary equation of Sobolev
type with strong (L, p)-radial operator. An optimal control of solutions of the initial-final
problem for the Sobolev type equation was investigated by A.G. Dylkov in [20]. B pa6ore
[21] Ucnamosoit A.®. A mixed control problem of distributed systems with functional,
which is weak with respect to state function, was considered by A.F. Islamova in [21] .
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A solution of the optimal measurement problem as a mixed optimal control problem is
provided in the first part of the article. An algorithm of numerical solution to the optimal
measurement problem using splines is proposed in the second part.

1. A Solution of the Optimal Measurement Problem
as a Mixed Optimal Control Problem

Consider spaces of states and controls
3=H"(R") ={z€ Ly ((0;7);R™) : 2 € Ly ((0;7); R™)},
=[N (R") = {u € Ly ((0;7); R") : u®tV € L, ((0;7); R}, 40 = H' (R") .

Let $h,4, U2, be compact and convex sets of admissible controls in 4, $I°, respectively.
To solve the mixed hard control problem we search (wg,v, z (wg,v)) € U2, X LUy X 3
satisfying almost everywhere the Leontief type system

Lz(t) = M=z(t) + Nu(t) (6)
[RE(M)]" (2(0) — wo) = 0 (7)
J (vg,v) = (wo’u)rgilixﬂad ; /OT HCZ(‘I) (t, wo, u) — Cw(()q) (t)H dt, (8)

where z = col (T1, T2, .o, Tny Y1, Y2y ooy Ym), T = col (X1, T2, ..., Tp), Y = col (Y1, Y2,y s Ym)s
u = col (uy,us, ..., u,) are vector-functions of states, measurements and observations; C'z,

Cwy are simulated and real observations, using to restore a distorted signal, respectively.
Problem (3) — (5) in Hilbert spaces and in a more general formulation was considered
in [22]. Therefore, we give the following result for the finite-dimensional case without proof.

Theorem 1. Let matriz M (L,p) be reqular, p € {0} UN, and det M # 0. Then there is
a unique solution (wo, v, z (wp,v)) € U0, X Uyg X 3 is a minimum point of functional (5),
and z (vg,v) is a solution of problem (3), (4) and is defined by the formula

2 (wo,v(t)) = lm z (wp,v(t)) = lim [Z};wo -

k—+o0 k—+o0

= (MHI = Qu)L)" MH(I = Qy) (Nu(1))'” + / ' Rz—SQkNws)ds] 9

0

where
k(p+1)

7l = ((L - %M) h L> o Q= (RLEMD))TT,

" -1 k(p+1)-1 ; 1
b= L——-M L N\ L—-M :

Consider quality functional (8) on the compact convex sets U4 C U, U°, C U°. Note
that this functional is a continuous function by the construction. By Weierstrass theorem
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for continuous functions on a compact, quality functional (8) is bounded function on
Wy = U, x Uyg. A convex is an important property of function in the study of the
convergence.

Theorem 2. [23]| Let matriz M (L,p) be reqular, p € {0} UN, detM # 0, and sets

Uog € U, U0, C U be compact and convex. Then functional (8) is strongly convex
function on Weg = U0, X Lyy.

Let w(t) = (wo;v(t)) € W,q. Denote an exact and an approximate solution of
problem (6) - (8) as (w(t),z (w(t))) and (wj(t), Zf (W} (t))), respectively. Here Jj (wy)
is an approximate value of the functional.

Theorem 3. |24| Let matriz M (L,p) be reqular, p € {0} UN, and det M # 0. A functional

J (w) = 21: /0 ch@ (t,w) — Cuw® (t)H dt

is continuous, strongly convez, bounded on the convex compact set . Let (w(t), z (w(t)))
be exact solution of (3)—(5), and (w}(t), Z (wWi(t))) be approzimate one. Then a sequence
{w} converges to {w} in the norm L, a sequence {Z;} converges to {z} in the
norm 3 for k — oo, { — oo such that Jy (@Di) — J(w), and an inequality

q|[if —w!|| < Jy (@f) — T (w) holds.

2. An Algorithm for Numerical Solution
of the Optimal Measurement Problem Using Linear Splines

Preliminary calculations and enter of data are performed on the 1st stage. This stage
is similar to the previously considered algorithms for numerical solution of the optimal
measurement problem [11, 25|.

STEP 1. Calculate det M. Check that its value is different from zero with an accuracy
e =107, In the case of det M = 0 it is necessary to substitute y = e*x and continue to
find a solution.

STEP 2. Calculate an order of the pole p =n — ¢, where ¢ = deg det (uL — M).

STEP 3. Calculate number K from which one can calculate an approximate solution
K = max {ky, ko}. Here ky = 237 Ja;| + 1, ke = =570 ag| (p + 1)"" + 1, where

a apP
- 1 N A
& = 1max {17 laql > iz0 |az|}.
A search for an interim solution is performed on the 2 stage. Earlier a zero solution as
a initial one was used in algorithms of solution search. An intermediate solution is searched

in the form: v!(t) = col <Z§.:O aytl, . .. 725’:0 dnjtj>.

STEP 4. Determine points ¢;: t; =ty + 23:1 Aj,i=1,...,n,and t, = T.

STEP 5. Enter observation values yo = y(to), y1 = y(t1) using natural experiment
data.

STEP 6. Perform linear interpolation by the points (to;y0) and (t1;41).

STEP 7. Find measurement vector-function 9; = a? + ajty, t € [to,t1] as a solution of

the mixed control problem.
STEP 8. Define a state of the system z; = Z(¢;) by 0, = @) + ait;.
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Fig. 1. Linear interpolation

Steps 9-11 form a cycle through ¢ =2,...,n, and t,, = 7 (result on Fig. 1).

STEP 9. Perform linear interpolation by the points (¢;_1;y;-1), (¢;;y;) and obtain
i =y(ts)-

STEP 10. Find measurement vector-function of solution of optimal control problem in
the form of T)z = EL? + dzlt“ and EL? = ﬁi—l(ti—l)-

STEP 11. Find a state of the system Z; = Z(¢;) by measurement vector-function

STEP 12. Perform interpolation by (¢;,9;) by Lagrange polynomial:

(t) = col (2320 aytl, .. Y, anjtj).
A search of proximate solution is performed only on the 3th stage.

250 ,

0 o 002 08 O 005 006 007 008 009 01

Fig. 2. Result of calculations
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STEP 13. For given n and integration interval [0, 7] calculate weights w; and nodes
2n+1

s; for Gauss quadrature formula /0 flz)dr ~ % Z w; f (% + gsj> , where nodes s; are
j=1

d
S ((tQ - 1)2) ,n = 0,1, and weights are

zeros of Legendre polynomial P,(t) = S
"n!

[P7(s5)]P(1 = s5)*
STEP 14. Calculate z(t) u Ji(zx) in given points ¥, € [0, 7] for the values a;;, which

determined by the next formula w; =

were found on the 2 stage from v'(t) = col (Z 0 a1t .. 722:0 C_Lnjtj>.

STEP 15. Find a minimum of the functional J(¢}) and a minimum point
ot = col (E] 0l Zé Oamt]>

Consider a process for finding of values of coefficients c/LZ and an approximate value

of the quality functional Jy(0}) = Jk(?) within one iteration of the main calculation.

—

Substitute a,; = af; ' and J = Jy(af; ") for iteration p — 1.
The followmg steps are carrled out for each i-th component :
1) a(lgr) = a9 + hip and aw -) = = ay — hio. Calculate the functionals J11+ n J
If J11+ > J and Jl1 ) > J, then af, = al, and go to the element ay.
2) If J < J(J8) < J), then
I = I < ) o) = o) = o),

Then, change ag °) a%ﬂ §0 *) 4 hayg and a% ) = a%s) hao, where hog =7 - hyg.

1f J2P > 709 and J#7 > 789 then am—am 9 J=J") and go to the element as.

3) If JPY < JI9(JC) < JU9Y then

0 2 A 2 1) wnd ) = a5y = ).

Then, change a%s), etc.

The procedure of elements change is performed over all elements of the first row. Then,
determine a value aj; = ay; for which value J was obtained after a cycle over elements
of the first row. aj¢ is the unique array element, which is changed. After changing of the
clement ap¢ of the first row go to a cycle over elements of the second row, etc. An array
thus obtained is used in future calculations. Note that during the calculation a step value
A;, which gives the lowest value of the quality functional, is fixed for each row. Subsequent
iterations of changing of ith row elements start with A;. It significantly increases the speed
of calculations.

The main calculation is as long as the condition ’Jk <af’j> —Ji (afjfl) < ¢ does not

hold. After required accuracy is achived, one calculate a minimum of functional J (172) and

a minimum point 9% = col <Z;:0 ajt, .. Zz 0 anjtj>

STEP 16. Calculate value z} = z;,(0Y; 0%; ¢).

The introduction of the new stage 2 significantly reduces the number of iterations on
the 3th stage (Fig. 2). Finally, it leads to reducing of the computation time needed to

solve the optimal measurement problem.
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OB AJITOPUTME UMCJIEHHOT'O PEIIIEHUSA 3AJTAYN
OIITUMAJIBHOI'O U3MEPEHUS C NCIIOJIB30OBAHUEM
JIMHEMHBIX CILJIATHOB

A.A. Jbeanb

B pabote paccMoTpeH aJIropuTM YHUCIEHHOTO PEIIeHns 3aJa4di ONTUMAJIbHOTO U3Mepe-
HUSI C UCIIOJIb30BAHUEM JIMHEWHBIX CIUIANHOB. 3a/ada ONTUMAJIBHOIO U3MEDEHWs, B OCHOBE
KOTOPOI MOJIEJIb OIITUMAJIBHOTO yIIPABJIEHUS], CTABUTCS JIJISI BOCCTAHOBJIEHUS JIMHAMUYECKHU
NCKayKEeHHOT'O CUTHAJIa. B cTaTbe Mpe/yIosKEHO MCIIOIb30BAaTh 33/1a9y CMENIAHHOI'O YIIpaBJIe-
HUS JIJIsI CHCTEM JIEOHTHEBCKOI'O TUIIA B PA3PA00TKE YUCJIEHHOTO aJrOPUTMA PEIIEeHUsT 33,1891
ONTUMAJILHOTO n3MepeHus. Kpome TOro, nCrnop30Banne THHEHHBIX CIUIAHHOB HA OHOM W3
9TAIIOB AJITOPUTMA O3BOJISET YMEHBIITUTD KOJIMYIECTBO MAITMHHOIO BPEMEHH, HEOOXOIIMOT0
JJId HaXOXKJIeHU A IIpI/I6JII/I)K€HHOFO pemienusd C 3&/1&HHOI‘/’I TOYHOCTBIO.

Karouesvie cao6a: wucaeHHuill aazopumm 360a4t ONMUMAALHO20 USMEPEHUA; 3G0a-
Y0 CMEWAHHO020 YNPABAEHUSA; ONMUMAAOHOE YNPABAEHUE; CUCTNEME AEOHMBEBCKO20 TMUNG;
yeaosue [lloyoamepa — Cudoposa; aunetinve cnaainot.
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