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Existence of solution theorems are obtained for stochastic differential inclusions given
in terms of the so-called current velocities (symmetric mean derivatives, a direct analogs
of ordinary velocity of deterministic systems) and quadratic mean derivatives (giving
information on the diffusion coefficient) on the flat n-dimensional torus. Right-hand sides
in both the current velocity part and the quadratic part are set-valued but satisfy some
natural conditions, under which they have e-approximations that point-wise converge to
Borel measurable selections of the corresponding set-valued mappings.
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Introduction

This paper paper is devoted to the same topic as [8], but here we deal with another
type of right-hand sides of the inclusion, both for the part with current velocities and for
that with quadratic mean derivatives.

Recall that the notion of mean derivatives was introduced by Edward Nelson [10, 11, 12]
for the needs of stochastic mechanics (a version of quantum mechanics). The equation of
motion in this theory (called the Newton — Nelson equation) was the first example of
equations in mean derivatives. Later it turned out that the equations in mean derivatives
arose also in many other branches of science (mechanics, hydrodynamics, Navier — Stokes
vortices, gauge fields, economics, etc.).

Nelson introduced forward and backward mean derivatives while only their half-sum,
symmetric mean derivative called current velocity, is a direct analog of ordinary velocity
for deterministic processes. In [2] another mean derivative called quadratic, is introduced.
It gives information on the diffusion coefficient of the process and using Nelson’s and
quadratic mean derivatives together, one can in principle recover the process from its
mean derivatives.

Since the current velocities are natural analogs of ordinary velocities of deterministic
processes, investigation of equations and especially inclusions with current velocities is
very much important for applications since there are a lot of models of various physical,
economical etc. processes based on such equations and inclusions.

In [8] we investigated the inclusions with current velocities in the case where both the
part with current velocities and that with quadratic mean derivatives in the right-hand side
of the inclusion had smooth selectors. Here we deal with another sort of right-hand side:
they satisfy some natural conditions, under which they have e-approximations that point-
wise converge to Borel measurable selections of the corresponding set-valued mappings.
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To avoid some technical difficulties we consider the inclusions on the flat n-dimensional
torus 7. This means that the torus is considered as a quotient space of R™ relative to
the integral lattice and that the Riemannian metric on 7" is inherited from the Euclidean
metric in R™. Everywhere below we use the operations of addition and subtraction of
points and integration in 7™ as in R™ modulo factorization relative to the integral lattice.
The construction and notation of stochastic integrals and stochastic differential equations
on 7™ are the same as in R" because of the use of Euclidean metric.

The detailed exposition of preliminary notions and facts from the Theory of Mean
Derivatives used in the paper, can be found in [7]. For the Theory of Set-Valued Mappings
we recommend |3].

Everywhere in the paper we use Einstein’s convention of summation relative to a
shared upper and lower index (see, e.g., [7]).

1. Preliminaries on Mean Derivatives

For the sake of convenience here we have to repeat shortly the preliminaries on mean
derivatives from [8]. Consider the n-dimensional flat torus 7™. We shall deal with stochastic
processes in 7™ given on a certain probability space (2, F,P), t € [0,7] C R.

Denote by Pf the sub-o-algebra of F generated by preimages of Borel sets from ) 7"
by all mappings £(s) : Q@ — R for 0 < s < t; P~ is called the “past” for £(t).

Denote by ./\ff the sub-o-algebra of F generated by preimages of Borel sets from 7"
by the mapping £(t) : @ — T"; N is called the “present” for £(t).

The o-subalgebras Pf and ./\/f for all ¢ are supposed to be complete, i.e., containing
all sets of probability zero. Obviously /\/f is a sub-o-algebra in Pf.

For the sake of convenience we denote by Ef the conditional expectation F(-|Ny) with
respect to N for &(t).

As in [10, 11, 12|, we introduce the following notions of forward and backward mean
derivatives.

Definition 1. (i) The forward mean derivative DE(t) of £(t) at the time instant t is an
Ly random element of the form

DE(t) = lim Ef (

At—+0

§(t+ At) —E(t))

At (1)

where the limit is supposed to exist in L1(Q2, F,P) and At — +0 means that At tends to
0 and At > 0.
(i1) The backward mean derivative D,E(t) of £(t) at t is the Ly-random element

f(t)—f(t—ﬁt))
At

D.&(t) = lim Ef(

At—+0

(2)

where (as well as in (1)) the limit is assumed to exist in L' (Q, F,P) and At — +0 means
that At — 0 and At > 0.

As usual in the machinery of conditional expectation (see, e.g., [13|), there exist Borel
measurable vector fields a(¢,m) and a$(t,m) such that DE(t) = a®(t,£(t)) and D,E(t) =
as(t,&(t)), respectively.
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Definition 2. The derivative Dg = %(D + D,) is called the symmetric mean derivative.
The derivative Dy = %(D — D,) is called the antisymmetric mean derivative.

Consider the vectors vé(t, z) = 1 (a®(t, z)+as(t, ) and u*(t,z) = 1(a*(t,z) —ai(t, x)).

Definition 3. v°(t) = v5(t,£(t)) = Ds&(t) is called the current velocity of the process £(t);
ut(t) = ut(t,&(t)) = DAE(t) is called the osmotic velocity of the process £(t).

The physical meaning of current velocity is a direct analog of the ordinary velocity of
a deterministic process. The osmotic velocity measures how fast the randomness increases.
This interpretation becomes clear from the following features of v* and u¢ (see [12]).

Consider an autonomous smooth field of non-degenerate linear operators A(x) : R x
R™ — R™ & € T™. Suppose that £(t) is a diffusion type process whose diffusion integrand is
A(t,&(t)). Then its diffusion coefficient A(x)A*(x) is a smooth field of symmetric positive
definite (2,0)-tensors with matrices a(z) = (a”(z)). Since all those matrices are non-
degenerate, the field of inverse matrices (a;;(x)) exists and is smooth and at any (z) the
matrix (a;;)(x) is symmetric and positive definite. Thus it defines a new Riemannian metric
(symmetric positive definite (0,2)-tensor field) a(-,-) = a;;dz* ® dz? on T". Consider the
Riemannian volume form of this Riemannian metric A, = /det(ay;)dz! Adz? A+ Ada™.

Denote by p°(t,z) the probability density of £(t) with respect to the volume form
dt A A, = J/det(j)dt A dxt Adx® A--- Adz™ on [0,T] x T", ie., for any continuous
bounded function f :[0,7] x T™ — R the relation

T

/TE< ://M i) :/ [ e )a

0

holds. Then under the assumption that p(¢, ) nowhere equals zero

L 55 (@Y(t, 2)p (¢, 7)) 0
2" pE(t, ) O W

ut(t,z) =

where (%) is the matrix of operator AA*. Formula (4) is proved in [4].
For v5(t,x) and p*(t,z) the so called equation of continuity

0p(t, )

praaks —Div(v(t, 2)p(t, x)) (5)

holds, where Div denotes divergence with respect to the Riemannian metric af-,-).
Formula (5) is proved in [2].

Following [1] we introduce the differential operator Dj that differentiates an L; random
process £(t), t € [0,T] according to the rule

Do¢(t) = Alti_rg.o Etﬁ ((f(t + At) = £(t)(E(t+ At) — f(t))*) |

6
N (6)
where (£(t+ At) —&(t)) is considered as a column vector (vector in R™), (§(t4+ At) —&(¢))*
is a row vector (transposed, or conjugate vector) and the limit is supposed to exists in
Ly (92, F,P). We emphasize that the matrix product of a column on the left and a row on the
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right is a matrix with rank 1 but after passing to limit and taking conditional expectation
Dy&(t) becomes a symmetric semi-positive definite matrix function on [0, 7] x R™ (in many
cases positive definite). We call Dy the quadratic mean derivative. It takes values in the
set of (2,0)-tensors having symmetric positive semi-definite matrices.

As mentioned above, the current velocity is analogous to ordinary velocity for a non-
random process. Thus, from the physical point of view, it is an important problem to
study equations and inclusions with current velocities.

Let v(t,m) be a vector field and «(t, m) be a symmetric positive semi-definite (2,0)-
tensor field on 7. The system

{Dgg(t) = v(t,£(t)) (7)
Doé(t) = a(t&(t)

is called the first order differential equation with current velocities.
Note that equation (7) on the flat torus 7" can be considered as an equation on R™
periodic in space variables.

Definition 4. We say that (7) on T" has a solution on [0, T with initial condition £(0) =
o if there exists a probability space (Q, F,P) and a process &(t) given on (Q,F,P) and
taking values in T" such that £(0) = &y and for almost allt € [0,T] equation (7) is satisfied
P-a.s. by £(t).

Theorem 1. Let v : [0,T] x T" — R™ and o : T" — Sy (n) be smooth (so o determines
the Riemannian metric af-,-) on T, introduced above). Let & be a random element with
values in T" whose probability density po with respect to the volume form A, of a(-,-)
on T" (see above) is smooth and nowhere equal to zero. Then for the initial condition
€(0) = & equation (7) has a solution that is well-defined on the entire interval t € [0,T].

Theorem 1 is a simple corollary to the main result of [2]. Here we use the fact that on
the compact manifold 7™ the right-hand sides of (7) are uniformly bounded and so the
hypothesis of the existence theorem from [2] is fulfilled.

Introduce py = log po and consider p(t,m) = log p*(t,m) where p*(t,m) is the density
(3) corresponding to the solution £(t) of (7). It is shown in [2, Theorem 3| that p(t,m) is
well-posed and takes the form

plt,m) = polgi(m)) — / (Div v)(5, gs(g1(m)) ds (8)

where Div is the divergence with respect to a(+,-) and g, is the flow of smooth vector field
v(t, m).

2. Some Technical Constructions

Lemma 1. Let a(x) be a jointly continuous mapping from [0,T] x R™ to S (n). Then
there exists a jointly continuous mapping A(z) from [0,T] x R™ to the space L(R"™ R™)
such that for any x € R" the equality A(z)A*(z) = a(z) holds.

Proof.  Since the symmetric matrices «(x) are positive definite, all their angular minors
are positive and in particular do not equals zero. Then the so-called Gauss decomposition
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holds (see [14, Teopema 11.9.3]): a = (dz, where ( is a lower-triangle matrix with units
along the diagonal, z is an upper-triangle matrix with units along the diagonal and ¢ is
a diagonal matrix. In addition the elements of (, § and z are rationally expressed via the
elements of v, i.e., those matrices are continuous in z. From the fact that o are a symmetric
matrices, one can easily see that z = (* (z is the transposed (). One also can easily see
that in this situation the elements of diagonal matrix ¢ are positive. Hence, the diagonal
matrix v/9, in which on the diagonal the square roots of the corresponding elements of &
are located, is well-posed. Consider the matrices A(z) = ¢+/§. By the construction A(z)
is continuous in z and A(z)A*(x) = ((x)d(x)z(x) = a(x).

(I

Corollary 1. If in the hypothesis of Lemma 1 a(x) is not continuous but Borel measurable
or smooth, there exists Borel measurable or smooth, respectively, mapping A(z) from R™
to the space L(R™,R™) such that for any x € R™ the equality A(x)A*(x) = a(x) holds.

Denote by T_(n) the set of lower-triangle n x n matrices with zeros along the diagonal.
It is a linear subspace in the space R™ of all n x n matrices. Evidently ¢, introduced above,
belongs to the linear sub-manifold T_(n)+1 in R, where I is the unit nxn matrix.Denote
by T:S.(n) — T_(n) the smooth mapping o € S, (n) to

Ta=(—-I1€T_(n). 9)

Denote by Spc the set of symmetric positive definite matricas with constant (equal
to C' > 0) determinant. In particular, this means that ¢; - ... - 0, = const = C and
Vo1 - .- \/8, = /C, where the dot denote the multiplication.

Let Lo(n) be a linear subspace in R™ that consists of the vectors X = (X*,..., X")
such that X! + ... + X™ = 0. Introduce the smooth mapping Lc : S;c — Lo, that sends
the symmetric matrix o € Si¢ to

@ lnm
Jo B

where ¢, are diagonal elements of § correspondent to «.

Note that T_(n) and Ly(n) are linear spaces, i.e., the notion of convex set in those
spaces is well-posed.

Consider a smooth field of symmetric positive definite (2,0)-tensors a(m) = (a*(m))
on the torus. Since all those matrices are non-degenerated, the field of inverse matrices
(a;5) is well-posed and smooth. In addition at every m the matrix (a;;)(m) is symmetric
and positive definite. Thus the latter field can be considered as a new Riemannian metric
on 7™ (a smooth field of symmetric positive definite (0, 2)-tensors) a(-,-) = a;;dq" @ dq’.
Consider its volume form A, = \/det(cy;)dg" Adg* A -+ A dg™.

Le(a) = (In

) € Lo(n), (10)

Lemma 2. ([9]) For any smooth autonomous (2,0)-tensor field a(m) on the flat torus T™
with the values in Spc:

(i) The volume form A, of the corresponding Riemannian metric o(-,-) is equal to
VOAg, where Ag = dg* A -+ A dg™ is the volume form of the Fuclidean metric on T",
inherited from R™ after factorization with respect to integral lattice.

(11) For any smooth vector field v(t,m) on T" its divergence Div v with respect to A,
coincides with the ordinary divergence divv (i.e. with respect to Ag).
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(111) For any random element with values in T™ its density of distribution with respect
to A, equals the density of distribution with respect to A, divided by v/C'.

Proof. Indeed, [eficreurensro, A, = /det(a;;)dgt A -+ A dg™ and since det(a;;) = C,

Ao = VCAg =VCdg' A --- N dqg".
Recall that Div v can be found from the equlity

L,A, = (Divo)A,,

where £, is the Lie derivative along v (see details, e.g., in [7]). Recall also that £,A, =

d(v]Ay), where | denotes internal multiplication of vectors and differential forms. Since C

is constant, d(v]A,) = ggz VCAp = gz: = divo.
Statement (iii) follows from (i).

o .
82,- A,. Hence, Divy =

3. Inclusions with Current Velocities

Let v(t, m) be a set-valued vector field and «(¢, m) be a set-valued symmetric positive
semi-definite (2,0)-tensor field on 7. The system of the form

Dsé(t) € v(t,8(1)),
{ Dyé(t) € a(t, &(2)). (11)

is called a first order differential inclusion with current velocities.

Definition 5. We say that (11) on T" has a solution on [0,T] with initial condition
€(0) = & if there exists a probability space (2, F,P) and a process £(t) given on (2, F,P)
and taking values in T" such that £(0) = & and for almost all t € [0, T] inclusion (11) is
satisfied P-a.s. by &(t).

We suppose that v(t,m) and a(t, m) satisfy the following conditions:

Assumption 1. Set-valued vector filed v(m) on T™ is autonomous, upper semi-continuous,
uniformly bounded and has closed convex images.

Assumption 2. (i) Set-valued (2,0)-tensor field oo on T™ takes values in Spc; it is
autonomous and upper semi-continuous.

(ii) The values of o are closed and upper semi-continuous.

(i1i) For every m € T™ the set T(a(m)) is convex in T_(n) and Lc(a(m)) is convex
in Lo(n).

Theorem 2. Let the set-valued vector field v(t,m) on T™ satisfy Assumption 1 and the
set-valued (2,0)-tensor field a(m) satisfy Assumption 2. Consider a random element &,
with values in T™ whose density of distribution with respect to the volume form Ag equals
V' Cpy where po is smooth and nowhere equal to zero. Then for initial condition £(0) =&
inclusion (11) has a solution well defined on the entire interval t € [0,T].

Proof. First of all, by [7, Theorem 4.11] under the conditions of Assumption 1 for every
sequence of positive numbers €, — 0 there exists a sequence of single-valued continuous
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e-approximations vy of v(t, m) that point-wise converges to a Borel measurable selector of
v(t,m). Without loss of generality we can suppose those e-approximations to be smooth.

Since the mappings T andL¢ are smooth, the set-valued mappings Ta with values
in T_(n) and Loa with values in Ly(n) are upper semicontinuous since such is a. By
Assumption 2 their values are convex, closed and uniformly bouded. Then by |7, Theorem
4.11] for every sequence of positive numbers £, — 0 there exist sequences of single-valued
continuous €,-approximations that point-wise converge to a Borel measurable selector of
Ta and Leoa, respectively. Take those sequences of approximations as €, — 0 as above.
Without loss of generality those approximations can be considered as smooth. Thus, there
exists a sequence ai(m) of single-valued smooth and uniformply bounded (2,0)-tensor
fields from Sp¢ that pointwise converges to a Borel measurable selector a(m) of the set-
valued field ae(m). We denote the components of ay,(m) by af.

Construct the sequence of Riemannian metrics ay(+, -) from the tensor fields ay(m) as
above.

Consider the sequence of equations

Dg&(t) = vi(&(1))
{D2§<t> = alElt) (12)

Note that by Lemma 2 we can consider the same initial condition &, for all those equations
since its distribution density with respect to all ay(+, -) coincide. Note also that all v, and oy
are uniformly bounded by the same constant since they are e-approximations of uniformly
bounded set-valued mappings. Since all those e-approximations are at least C'*-smooth and
given on the compact torus, their partial derivatives are uniformly bounded for every k
(by a constant depending on k). Thus all equations (12) satisfy the hypothesis of Theorem
1, i.e. for every equation there exists a solution. We denote by & (t) the solution of the
k-th equation.

As it is said in Section 2.every ax(m) can be represented as ag(m) = Ag(m)Aj(m),
where Ag(m) are smooth and uniformly bounded.

On the Banach manifold C°([0, T, 7™) of continuous curves in 7™ we introduce the o-
algebra C generated by cylinder sets, and denote by p; the measure on (C°([0, 7], 7"),C),
generated by the solution & (t). We also introduce the family of complete o-sub-algebras
Py, generated by cylinder sets with bases over [0,¢], ¢t € [0, 7], and the family of complete
o-sub-algebras N;, generated by preimages of Borel sets in 7" under the mappings z(-) —
x(t). It is clear that N, is a o-sub-algebra in P; and that P, is the "past” o-albera while N,
is the "present” o-algebra for coordinate processes on (C°([0,T],T™),C, ux). Recall that a
process ((t) that generates measure pu.eta on (C°([0,7],7™),C), can be represented as a
process on (C°([0,T],T"),C, u) as the so-called coordinate process ((t,x(-)) = z(t).

Lemma 3. The set of measures py, on (C°([0,T],T™),C) is weakly compact.

Proof. Note that since all processes & (t) take values in the compact torus, all E(t) are
uniformly bounded.

Specify two real numbers 0 < s < ¢t < T with small enough difference ¢ — s. For every k
the increment of &, on [s, ¢] is approximated by the expression vy, (£5£)(t —s)+ Ay (s) (w(t) —
w(s)). Consider E((vx(22)(t — s) + Ap(s)(w(t) — w(s))) (ve(EE) (¢ — s) +Ax(s)(w(t) —
w(s)))*). Since for all k the norms of v, and A, are bounded by the same constant, one
can easily see that among the summands obtained in this expression, only ay(t — s) is an
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infinitesimal of the same order as ¢t — s while all other summands are infinitesimals of an
order higher that t — s. Thus there exists a constant h; such that if the difference t — s
is small enough, the above expression is less than h(t — s). By integration one can derive
from this, that there exists a constant h > 0, depending on 7" and on the constant that
is a bound of the norms of v, an ay, such that for all 0 < t; < t5 < T and every k the
inequality E(&(t2) — &k (t1))* < h(ty — t2)? holds. Now the assertion of theorem follows
from Lemma [5, Theorem 2 Section 4 Chapter VIJ.

O

Let us go on the proof of Theorem 2. Since the set {ux} of measures on
(C°([0,T],T™),C) is weakly compact, one can choose a subsequence that weakly converges
so a certain measure pu. Without loss of generality we can suppose that the sequence piy
weakly converges to p. Consider the coordinate process £(t) on the probability space
(C°([0,T],T™),C, ), i.e. for every elementary event z(-) € C°([0,T],7™) by definition
E(t,z(+)) = m(t). Recall that P; is the <past> for £(t), while N; is the <presents for this
coordinate process.

By the construction, for every & (t) its quadratic derivative equals ay(&x(t)). This
means that for every bounded continuous treal function f(m(-)) on C°([0,T],7™) that is
measurable with respect to N;, the equality

lim
At—0

/ {(m(t + At) —m(t))(m(t + At) — m(t))*
CO([0,7],77) At

— ar(m(t))| f(m(-))dpx =0

holds.

Since ay(t, m) pointwise tends to a(t,m) as k — 0o, ay(t, m) tends to a(t, m) a.s. with
respect to all measures p; and with respect to p. Specify 0 > 0. By Egorov’s theorem (see,
e.g., [15]) for every i there exists a subset K: C C°([0,T],7™) such that (u;)(K}) >1—46

and the sequence ay(m(t)) on K% converges to a(m(t)) uniformly. Introduce K5 = |J K&
i=0

The sequence ag(m(t)) on Ky for all i converges to a(m(t)) uniformly and u(Ks) > 1—9.

The field a(m(t)) is continuous on a set of complete measurey on CO([0,T], T").

Indeed, consider the sequence §; — 0 and the corresponding sequence Ks,. By construction,
a(m(t)) is a unformal limit of the sequence of continuous functions on every Kj,. That

is why a(m(t)) is continuous on every Kj , i.e. on any finite union |J Kj,. Evidently
i=1

lim pu(|J Ks,) = 1.
n—oo ;74
Taking into account the uniformal convergence on Kj for all k (see above) we derive

from boundedness of f(m(-)) that for k large enough

< 0.

| Tontom(®) = atn(o)] S 0m ()

K,

Since f(m(-)) is bounded, there exists a certain number = > 0 such that | f(m(-))| < E for
all m(-). Recall that all ay(m) and a(m) are uniformly bounded, i.e., their norms are not

2016, vol. 3, no. 1 55



Yu. E. Gliklikh, A. V. Makarova

greater than some number () > 0. Then, since
for all k large enough,

Lo lantmle) ~ alm(®)m ()| < 2002
CO([OvT}an)\KS
for all k large enough. Since § is an arbitrary positive number,

lim [ (m(t)) — a(m(t))]f (m())dpy = 0.

k=00 Joo(jo,17,7m)

The function a(m(t)) is p-a.s. continuous and bounded on C°([0, T], T") (see above). Since
in addition the measures pu; weakly converge to i, by Lemma from [6, section VI.1]

lim a(m m(-)duy = alm (Vi
/CO([O’TLM (m(t)) f(m(-))dp /CO([O,TWH) (m(t)) f(m(-))dp

Evidently
im (m(t + A = m(O)(m(t+ M) —m()]
’“l—"’o Co([0,7],77) [ At } f(m(-))duy,
_ (m(t + At) — m())(m(t + At —m(H)*] .
- /CO([O,T],Tn) [ At } fm(-))dp.
Thus,
lim (it = 80) =) mle 80 = i)
At=0 Jeo(jo,r),7m) At

- a<m<t>>} F(m())d = 0.

Since f(m(-)) is an arbitrary bounded continuous function, measurable with respect to
N, this means that D>&(t) = a(£(¢)). But by construction a(£(t)) € a(£(t)) p-a.s.

Next step deals with the current velocity of the solution. By construction Dgé(t) =
vk(t,&k(t)) for all k. This means that for every real bounded continuous function f on
CY([0,T], T™), measurable with respect to N, for all k the equality

m m(t +At) —m(t = At) . _
A, /CO([O,T],Tn) { N or(m(t))| f(m(-))dp =0

holds.
Specify an arbitrary ¢ > 0. Since u; weakly converges to pu, there exists K(g) such
that for £ > K(e)

m(t + At) —m(t — At) N
/CO([O,T},T”) { 2At } Flm(-))dpu

/CO([O,T] S T™)
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and

< €.

/ Fm())o(m(t))dpus — / Fm())o(m(t))dp
co([o,1],T™)

co([o,T],T™)

With the same arguments as above, by the use of Egorov’s theorem we prove that
Jim [or(m(t)) — v(m(t))]f (m(-))dpx = 0
—Jeo([o,11,7)

and that v is continuous on the set of complete measure. Recall that v is bounded as a
selector of bounded set-valued mapping.
Then by Lemma from [6, section VI.1| we obtain

lim v(m(t))f(m(-))du. = / v(m(t))f(m(-))dp.

koo Jeo(0,1),77) oot
Evidently
: (m(t + At) — m(t — At))}
lim Flm(Vdin, =
hvee CO([o,T]:rn)[ 2AL (m(-))dp
(m(t + At) — m(t — At))}
- f(m(-))dpu.
/CO([o,T},m { 2Nt (m(-))
Thus,
i (m(t + At) — m(t — At)
1 B N
A o (j0,1,7) [ 2AL v(m(t))| f(m())du =0

Since f(m(-)) is an arbitrary bounded continuous function, measurable with respect to
N, this means that Dg&(t) = v(£(t)). But by construction v(§(¢)) € v(&(t)) p-a.s. This
completes the proof.

O
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O CTOXACTNYECKUX NOPEPEHIINAJIbBHBIX
BKJIFOYEHNAX C TEKYIIINIMU CKOPOCTAMU II

0. E. I'nukaux, A. B. Maxaposa

[Tony4ueHBl TEOPEMBI CyIIECTBOBAHUS PEIIEHU CcTOXacTUdecKux auddepeHmaabHbIX
BKJIIOYEHUI, 33JAHHBIX B TEPMUHAX TAK HA3bIBAEMBIX TEKYIIMX CKOpocTeil (cummerpuue-
CKUX MPOU3BOJHBIX B CPEJIHEM, MPSIMBIX AHAJIOTOB OOBIYHBIX CKOPOCTEN JeTEepMUHUDPOBAH-
HBIX CHCTEM) M KBaJIPATUIHBIX IPOM3BOAHBIX B cpeHeM (Haromux undopMarmio o koadbdu-
nuenTe nuddys3un) Ha IIOCKOM n-MepHOoM Tope. IIpaBble yacTu u Jjist TeKyIeil CKOpOCTH,
" JIJIed JIJ1AA KBaﬂpaTHqHOﬁ IIpOI/ISBO}lHOﬁ MHOI'O3HaYHbI 1 YJIOBJIETBOPAIOT HEKOTOPBIM €CTe-
CTBEHHBIM YCJIOBUSIM, NPU KOTOPBIX OHU UMEIOT E£—AIllPOKCUMAIIAN, KOTOPBIE MOTOYEUHO
CXOJATCST K U3MEPUMBIM 110 BOpeJIio cejilekTopaM COOTBETCTBYIONMX MHOTO3HAYHBIX OTOO-
paKeHuii.

Karouesvie caosa: npouseoduvie 6 cpedhem, mekyusue ckopocmu, dupdeperyuanrvroie
BKNIOUCHUA.
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