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Existence of solution theorems are obtained for stochastic differential inclusions given
in terms of the so-called current velocities (symmetric mean derivatives, a direct analogs
of ordinary velocity of deterministic systems) and quadratic mean derivatives (giving
information on the diffusion coefficient) on the flat n-dimensional torus. Right-hand sides
in both the current velocity part and the quadratic part are set-valued but satisfy some
natural conditions, under which they have ε-approximations that point-wise converge to
Borel measurable selections of the corresponding set-valued mappings.
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Introduction
This paper paper is devoted to the same topic as [8], but here we deal with another

type of right-hand sides of the inclusion, both for the part with current velocities and for
that with quadratic mean derivatives.

Recall that the notion of mean derivatives was introduced by Edward Nelson [10, 11, 12]
for the needs of stochastic mechanics (a version of quantum mechanics). The equation of
motion in this theory (called the Newton – Nelson equation) was the first example of
equations in mean derivatives. Later it turned out that the equations in mean derivatives
arose also in many other branches of science (mechanics, hydrodynamics, Navier – Stokes
vortices, gauge fields, economics, etc.).

Nelson introduced forward and backward mean derivatives while only their half-sum,
symmetric mean derivative called current velocity, is a direct analog of ordinary velocity
for deterministic processes. In [2] another mean derivative called quadratic, is introduced.
It gives information on the diffusion coefficient of the process and using Nelson’s and
quadratic mean derivatives together, one can in principle recover the process from its
mean derivatives.

Since the current velocities are natural analogs of ordinary velocities of deterministic
processes, investigation of equations and especially inclusions with current velocities is
very much important for applications since there are a lot of models of various physical,
economical etc. processes based on such equations and inclusions.

In [8] we investigated the inclusions with current velocities in the case where both the
part with current velocities and that with quadratic mean derivatives in the right-hand side
of the inclusion had smooth selectors. Here we deal with another sort of right-hand side:
they satisfy some natural conditions, under which they have ε-approximations that point-
wise converge to Borel measurable selections of the corresponding set-valued mappings.
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To avoid some technical difficulties we consider the inclusions on the flat n-dimensional
torus T n. This means that the torus is considered as a quotient space of Rn relative to
the integral lattice and that the Riemannian metric on T n is inherited from the Euclidean
metric in Rn. Everywhere below we use the operations of addition and subtraction of
points and integration in T n as in Rn modulo factorization relative to the integral lattice.
The construction and notation of stochastic integrals and stochastic differential equations
on T n are the same as in Rn because of the use of Euclidean metric.

The detailed exposition of preliminary notions and facts from the Theory of Mean
Derivatives used in the paper, can be found in [7]. For the Theory of Set-Valued Mappings
we recommend [3].

Everywhere in the paper we use Einstein’s convention of summation relative to a
shared upper and lower index (see, e.g., [7]).

1. Preliminaries on Mean Derivatives
For the sake of convenience here we have to repeat shortly the preliminaries on mean

derivatives from [8]. Consider the n-dimensional flat torus T n. We shall deal with stochastic
processes in T n given on a certain probability space (Ω,F ,P), t ∈ [0, T ] ⊂ R.

Denote by Pξ
t the sub-σ-algebra of F generated by preimages of Borel sets from ђ T n

by all mappings ξ(s) : Ω → Rn for 0 ≤ s ≤ t; Pξ
t is called the “past” for ξ(t).

Denote by N ξ
t the sub-σ-algebra of F generated by preimages of Borel sets from T n

by the mapping ξ(t) : Ω → T n; N ξ
t is called the “present” for ξ(t).

The σ-subalgebras Pξ
t and N ξ

t for all t are supposed to be complete, i.e., containing
all sets of probability zero. Obviously N ξ

t is a sub-σ-algebra in Pξ
t .

For the sake of convenience we denote by Eξ
t the conditional expectation E(·|N ξ

t ) with
respect to N ξ

t for ξ(t).
As in [10, 11, 12], we introduce the following notions of forward and backward mean

derivatives.

Definition 1. (i) The forward mean derivative Dξ(t) of ξ(t) at the time instant t is an
L1 random element of the form

Dξ(t) = lim
△t→+0

Eξ
t

(
ξ(t+△t)− ξ(t)

△t

)
, (1)

where the limit is supposed to exist in L1(Ω,F ,P) and △t → +0 means that △t tends to
0 and △t > 0.

(ii) The backward mean derivative D∗ξ(t) of ξ(t) at t is the L1-random element

D∗ξ(t) = lim
∆t→+0

Eξ
t

(
ξ(t)− ξ(t−∆t)

∆t

)
(2)

where (as well as in (i)) the limit is assumed to exist in L1(Ω,F ,P) and ∆t → +0 means
that ∆t → 0 and ∆t > 0.

As usual in the machinery of conditional expectation (see, e.g., [13]), there exist Borel
measurable vector fields aξ(t,m) and aξ∗(t,m) such that Dξ(t) = aξ(t, ξ(t)) and D∗ξ(t) =
aξ∗(t, ξ(t)), respectively.
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Definition 2. The derivative DS = 1
2
(D +D∗) is called the symmetric mean derivative.

The derivative DA = 1
2
(D −D∗) is called the antisymmetric mean derivative.

Consider the vectors vξ(t, x) = 1
2
(aξ(t, x)+aξ∗(t, x)) and uξ(t, x) = 1

2
(aξ(t, x)−aξ∗(t, x)).

Definition 3. vξ(t) = vξ(t, ξ(t)) = DSξ(t) is called the current velocity of the process ξ(t);
uξ(t) = uξ(t, ξ(t)) = DAξ(t) is called the osmotic velocity of the process ξ(t).

The physical meaning of current velocity is a direct analog of the ordinary velocity of
a deterministic process. The osmotic velocity measures how fast the randomness increases.
This interpretation becomes clear from the following features of vξ and uξ (see [12]).

Consider an autonomous smooth field of non-degenerate linear operators A(x) : R ×
Rn → Rn, x ∈ T n. Suppose that ξ(t) is a diffusion type process whose diffusion integrand is
A(t, ξ(t)). Then its diffusion coefficient A(x)A∗(x) is a smooth field of symmetric positive
definite (2, 0)-tensors with matrices α(x) = (αij(x)). Since all those matrices are non-
degenerate, the field of inverse matrices (αij(x)) exists and is smooth and at any (x) the
matrix (αij)(x) is symmetric and positive definite. Thus it defines a new Riemannian metric
(symmetric positive definite (0, 2)-tensor field) α(·, ·) = αijdx

i ⊗ dxj on T n. Consider the
Riemannian volume form of this Riemannian metric Λα =

√
det(αij)dx

1 ∧ dx2 ∧ · · · ∧ dxn.
Denote by ρξ(t, x) the probability density of ξ(t) with respect to the volume form

dt ∧ Λα =
√

det(αij)dt ∧ dx1 ∧ dx2 ∧ · · · ∧ dxn on [0, T ] × T n, i.e., for any continuous
bounded function f : [0, T ]× T n → R the relation

T∫
0

E(f(t, ξ(t)))dt =

T∫
0

(

∫
Ω

f(t, ξ(t))dP)dt =

T∫
0

∫
Rn

f(t, x)ρξ(t, x)Λαt

 dt (3)

holds. Then under the assumption that ρξ(t, x) nowhere equals zero

uξ(t, x) =
1

2

∂
∂xj (α

ij(t, x)ρξ(t, x))

ρξ(t, x)

∂

∂xi
(4)

where (αij) is the matrix of operator AA∗. Formula (4) is proved in [4].
For vξ(t, x) and ρξ(t, x) the so called equation of continuity

∂ρξ(t, x)

∂t
= −Div(vξ(t, x)ρξ(t, x)) (5)

holds, where Div denotes divergence with respect to the Riemannian metric α(·, ·).
Formula (5) is proved in [2].

Following [1] we introduce the differential operator D2 that differentiates an L1 random
process ξ(t), t ∈ [0, T ] according to the rule

D2ξ(t) = lim
△t→+0

Eξ
t

(
(ξ(t+△t)− ξ(t))(ξ(t+△t)− ξ(t))∗

△t

)
, (6)

where (ξ(t+△t)−ξ(t)) is considered as a column vector (vector in Rn), (ξ(t+△t)−ξ(t))∗

is a row vector (transposed, or conjugate vector) and the limit is supposed to exists in
L1(Ω,F ,P). We emphasize that the matrix product of a column on the left and a row on the
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right is a matrix with rank 1 but after passing to limit and taking conditional expectation
D2ξ(t) becomes a symmetric semi-positive definite matrix function on [0, T ]×Rn (in many
cases positive definite). We call D2 the quadratic mean derivative. It takes values in the
set of (2, 0)-tensors having symmetric positive semi-definite matrices.

As mentioned above, the current velocity is analogous to ordinary velocity for a non-
random process. Thus, from the physical point of view, it is an important problem to
study equations and inclusions with current velocities.

Let v(t,m) be a vector field and α(t,m) be a symmetric positive semi-definite (2, 0)-
tensor field on T n. The system {

DSξ(t) = v(t, ξ(t))
D2ξ(t) = α(t, ξ(t))

(7)

is called the first order differential equation with current velocities.
Note that equation (7) on the flat torus T n can be considered as an equation on Rn

periodic in space variables.

Definition 4. We say that (7) on T n has a solution on [0, T ] with initial condition ξ(0) =
ξ0 if there exists a probability space (Ω,F ,P) and a process ξ(t) given on (Ω,F ,P) and
taking values in T n such that ξ(0) = ξ0 and for almost all t ∈ [0, T ] equation (7) is satisfied
P-a.s. by ξ(t).

Theorem 1. Let v : [0, T ] × T n → Rn and α : T n → S+(n) be smooth (so α determines
the Riemannian metric α(·, ·) on T n, introduced above). Let ξ0 be a random element with
values in T n whose probability density ρ0 with respect to the volume form Λα of α(·, ·)
on T n (see above) is smooth and nowhere equal to zero. Then for the initial condition
ξ(0) = ξ0 equation (7) has a solution that is well-defined on the entire interval t ∈ [0, T ].

Theorem 1 is a simple corollary to the main result of [2]. Here we use the fact that on
the compact manifold T n the right-hand sides of (7) are uniformly bounded and so the
hypothesis of the existence theorem from [2] is fulfilled.

Introduce p0 = log ρ0 and consider p(t,m) = log ρξ(t,m) where ρξ(t,m) is the density
(3) corresponding to the solution ξ(t) of (7). It is shown in [2, Theorem 3] that p(t,m) is
well-posed and takes the form

p(t,m) = p0(g−t(m))−
∫ t

0

(Div v)(s, gs(g−t(m)) ds (8)

where Div is the divergence with respect to α(·, ·) and gt is the flow of smooth vector field
v(t,m).

2. Some Technical Constructions

Lemma 1. Let α(x) be a jointly continuous mapping from [0, T ] × Rn to S+(n). Then
there exists a jointly continuous mapping A(x) from [0, T ] × Rn to the space L(Rn,Rn)
such that for any x ∈ Rn the equality A(x)A∗(x) = α(x) holds.

Proof. Since the symmetric matrices α(x) are positive definite, all their angular minors
are positive and in particular do not equals zero. Then the so-called Gauss decomposition
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holds (see [14, Теорема II.9.3]): α = ζδz, where ζ is a lower-triangle matrix with units
along the diagonal, z is an upper-triangle matrix with units along the diagonal and δ is
a diagonal matrix. In addition the elements of ζ, δ and z are rationally expressed via the
elements of α, i.e., those matrices are continuous in x. From the fact that α are a symmetric
matrices, one can easily see that z = ζ∗ (z is the transposed ζ). One also can easily see
that in this situation the elements of diagonal matrix δ are positive. Hence, the diagonal
matrix

√
δ, in which on the diagonal the square roots of the corresponding elements of δ

are located, is well-posed. Consider the matrices A(x) = ζ
√
δ. By the construction A(x)

is continuous in x and A(x)A∗(x) = ζ(x)δ(x)z(x) = α(x).
2

Corollary 1. If in the hypothesis of Lemma 1 α(x) is not continuous but Borel measurable
or smooth, there exists Borel measurable or smooth, respectively, mapping A(x) from Rn

to the space L(Rn,Rn) such that for any x ∈ Rn the equality A(x)A∗(x) = α(x) holds.

Denote by T−(n) the set of lower-triangle n×n matrices with zeros along the diagonal.
It is a linear subspace in the space Rn2 of all n×n matrices. Evidently ζ, introduced above,
belongs to the linear sub-manifold T−(n)+I in Rn2 , where I is the unit n×n matrix.Denote
by T : S+(n) → T−(n) the smooth mapping α ∈ S+(n) to

Tα = ζ − I ∈ T−(n). (9)

Denote by SLC the set of symmetric positive definite matricas with constant (equal
to C > 0) determinant. In particular, this means that δ1 · ... · δn = const = C and√
δ1 · ... ·

√
δn =

√
C, where the dot denote the multiplication.

Let L0(n) be a linear subspace in Rn that consists of the vectors X = (X1, . . . , Xn)
such that X1 + ... + Xn = 0. Introduce the smooth mapping LC : SLC → L0, that sends
the symmetric matrix α ∈ SLC to

LC(α) = (ln

√
δ1√
C
, ..., ln

√
δn√
C
) ∈ L0(n), (10)

where δi are diagonal elements of δ correspondent to α.
Note that T−(n) and L0(n) are linear spaces, i.e., the notion of convex set in those

spaces is well-posed.
Consider a smooth field of symmetric positive definite (2, 0)-tensors α(m) = (αij(m))

on the torus. Since all those matrices are non-degenerated, the field of inverse matrices
(αij) is well-posed and smooth. In addition at every m the matrix (αij)(m) is symmetric
and positive definite. Thus the latter field can be considered as a new Riemannian metric
on T n (a smooth field of symmetric positive definite (0, 2)-tensors) α(·, ·) = αijdq

i ⊗ dqj.
Consider its volume form Λα =

√
det(αij)dq

1 ∧ dq2 ∧ · · · ∧ dqn.

Lemma 2. ([9]) For any smooth autonomous (2, 0)-tensor field α(m) on the flat torus T n

with the values in SLC:
(i) The volume form Λα of the corresponding Riemannian metric α(·, ·) is equal to√

CΛE, where ΛE = dq1 ∧ · · · ∧ dqn is the volume form of the Euclidean metric on T n,
inherited from Rn after factorization with respect to integral lattice.

(ii) For any smooth vector field v(t,m) on T n its divergence Div v with respect to Λα

coincides with the ordinary divergence div v (i.e. with respect to ΛE).
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(iii) For any random element with values in T n its density of distribution with respect
to Λα equals the density of distribution with respect to ΛE, divided by

√
C.

Proof. Indeed, Действительно, Λα =
√
det(αij)dq

1 ∧ · · · ∧ dqn and since det(αij) = C,
Λα =

√
CΛE =

√
Cdq1 ∧ · · · ∧ dqn.

Recall that Div v can be found from the equlity

LvΛα = (Divv)Λα,

where Lv is the Lie derivative along v (see details, e.g., in [7]). Recall also that LvΛα =
d(v⌋Λα), where ⌋ denotes internal multiplication of vectors and differential forms. Since C

is constant, d(v⌋Λα) =
∂vi

∂qi

√
CΛE = ∂vi

∂qi
Λα. Hence, Divv = ∂vi

∂qi
= divv.

Statement (iii) follows from (i).

2

3. Inclusions with Current Velocities
Let v(t,m) be a set-valued vector field and α(t,m) be a set-valued symmetric positive

semi-definite (2, 0)-tensor field on T n. The system of the form{
DSξ(t) ∈ v(t, ξ(t)),
D2ξ(t) ∈ α(t, ξ(t)).

(11)

is called a first order differential inclusion with current velocities.

Definition 5. We say that (11) on T n has a solution on [0, T ] with initial condition
ξ(0) = ξ0 if there exists a probability space (Ω,F ,P) and a process ξ(t) given on (Ω,F ,P)
and taking values in T n such that ξ(0) = ξ0 and for almost all t ∈ [0, T ] inclusion (11) is
satisfied P-a.s. by ξ(t).

We suppose that v(t,m) and α(t,m) satisfy the following conditions:

Assumption 1. Set-valued vector filed v(m) on Tn is autonomous, upper semi-continuous,
uniformly bounded and has closed convex images.

Assumption 2. (i) Set-valued (2, 0)-tensor field α on T n takes values in SLC; it is
autonomous and upper semi-continuous.

(ii) The values of α are closed and upper semi-continuous.
(iii) For every m ∈ T n the set T(α(m)) is convex in T−(n) and LC(α(m)) is convex

in L0(n).

Theorem 2. Let the set-valued vector field v(t,m) on T n satisfy Assumption 1 and the
set-valued (2, 0)-tensor field α(m) satisfy Assumption 2. Consider a random element ξ0
with values in T n whose density of distribution with respect to the volume form ΛE equals√
Cρ0 where ρ0 is smooth and nowhere equal to zero. Then for initial condition ξ(0) = ξ0

inclusion (11) has a solution well defined on the entire interval t ∈ [0, T ].

Proof. First of all, by [7, Theorem 4.11] under the conditions of Assumption 1 for every
sequence of positive numbers εq → 0 there exists a sequence of single-valued continuous
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ε-approximations vk of v(t,m) that point-wise converges to a Borel measurable selector of
v(t,m). Without loss of generality we can suppose those ε-approximations to be smooth.

Since the mappings T andLC are smooth, the set-valued mappings Tα with values
in T−(n) and LCα with values in L0(n) are upper semicontinuous since such is α. By
Assumption 2 their values are convex, closed and uniformly bouded. Then by [7, Theorem
4.11] for every sequence of positive numbers εq → 0 there exist sequences of single-valued
continuous εq-approximations that point-wise converge to a Borel measurable selector of
Tα and LCα, respectively. Take those sequences of approximations as εk → 0 as above.
Without loss of generality those approximations can be considered as smooth. Thus, there
exists a sequence αk(m) of single-valued smooth and uniformply bounded (2, 0)-tensor
fields from SLC that pointwise converges to a Borel measurable selector α(m) of the set-
valued field α(m). We denote the components of αk(m) by αij

k .
Construct the sequence of Riemannian metrics αk(·, ·) from the tensor fields αk(m) as

above.
Consider the sequence of equations{

DSξ(t) = vk(ξ(t))
D2ξ(t) = αk(ξ(t))

. (12)

Note that by Lemma 2 we can consider the same initial condition ξ0 for all those equations
since its distribution density with respect to all αk(·, ·) coincide. Note also that all vk and αk

are uniformly bounded by the same constant since they are ε-approximations of uniformly
bounded set-valued mappings. Since all those ε-approximations are at least C1-smooth and
given on the compact torus, their partial derivatives are uniformly bounded for every k
(by a constant depending on k). Thus all equations (12) satisfy the hypothesis of Theorem
1, i.e. for every equation there exists a solution. We denote by ξk(t) the solution of the
k-th equation.

As it is said in Section 2., every αk(m) can be represented as αk(m) = Ak(m)A∗
k(m),

where Ak(m) are smooth and uniformly bounded.
On the Banach manifold C0([0, T ], T n) of continuous curves in T n we introduce the σ-

algebra C generated by cylinder sets, and denote by µk the measure on (C0([0, T ], T n), C),
generated by the solution ξk(t). We also introduce the family of complete σ-sub-algebras
Pt, generated by cylinder sets with bases over [0, t], t ∈ [0, T ], and the family of complete
σ-sub-algebras Nt, generated by preimages of Borel sets in T n under the mappings x(·) 7→
x(t). It is clear that Nt is a σ-sub-algebra in Pt and that Pt is the ”past” σ-albera while Nt

is the ”present” σ-algebra for coordinate processes on (C0([0, T ], T n), C, µk). Recall that a
process ζ(t) that generates measure µzeta on (C0([0, T ], T n), C), can be represented as a
process on (C0([0, T ], T n), C, µk) as the so-called coordinate process ζ(t, x(·)) = x(t).

Lemma 3. The set of measures µk on (C0([0, T ], T n), C) is weakly compact.

Proof. Note that since all processes ξk(t) take values in the compact torus, all Eξk(t) are
uniformly bounded.

Specify two real numbers 0 ≤ s < t ≤ T with small enough difference t−s. For every k
the increment of ξk on [s, t] is approximated by the expression vk(

s+t
2
)(t−s)+Ak(s)(w(t)−

w(s)). Consider E
(
(vk(

s+t
2
)(t − s) + Ak(s)(w(t) − w(s)))(vk(

s+t
2
)(t − s) +Ak(s)(w(t) −

w(s)))∗
)
. Since for all k the norms of vk and Ak are bounded by the same constant, one

can easily see that among the summands obtained in this expression, only αk(t− s) is an
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infinitesimal of the same order as t− s while all other summands are infinitesimals of an
order higher that t − s. Thus there exists a constant h1 such that if the difference t − s
is small enough, the above expression is less than h1(t− s). By integration one can derive
from this, that there exists a constant h > 0, depending on T and on the constant that
is a bound of the norms of vk an αk, such that for all 0 ≤ t1 < t2 ≤ T and every k the
inequality E(ξk(t2) − ξk(t1))

4 < h(t2 − t2)
2 holds. Now the assertion of theorem follows

from Lemma [5, Theorem 2 Section 4 Chapter VI].
2

Let us go on the proof of Theorem 2. Since the set {µk} of measures on
(C0([0, T ], T n), C) is weakly compact, one can choose a subsequence that weakly converges
so a certain measure µ. Without loss of generality we can suppose that the sequence µk

weakly converges to µ. Consider the coordinate process ξ(t) on the probability space
(C0([0, T ], T n), C, µ), i.e. for every elementary event x(·) ∈ C0([0, T ], T n) by definition
ξ(t, x(·)) = m(t). Recall that Pt is the ≪past≫ for ξ(t), while Nt is the ≪present≫ for this
coordinate process.

By the construction, for every ξk(t) its quadratic derivative equals αk(ξk(t)). This
means that for every bounded continuous treal function f(m(·)) on C0([0, T ], T n) that is
measurable with respect to Nt, the equality

lim
∆t→0

∫
C0([0,T ],T n)

[
(m(t+∆t)−m(t))(m(t+∆t)−m(t))∗

∆t
−

− αk(m(t))

]
f(m(·))dµk = 0

holds.
Since αk(t,m) pointwise tends to α(t,m) as k → ∞, αk(t,m) tends to α(t,m) a.s. with

respect to all measures µk and with respect to µ. Specify δ > 0. By Egorov’s theorem (see,
e.g., [15]) for every i there exists a subset K̃i

δ ⊂ C0([0, T ], T n) such that (µi)(K̃
i
δ) > 1− δ

and the sequence αk(m(t)) on K̃i
δ converges to α(m(t)) uniformly. Introduce K̃δ =

∞∪
i=0

K̃i
δ.

The sequence αk(m(t)) on K̃δ for all i converges to α(m(t)) uniformly and µ(K̃δ) > 1− δ.
The field α(m(t)) is continuous on a set of complete measureµ on C0([0, T ], T n).

Indeed, consider the sequence δi → 0 and the corresponding sequence K̃δi . By construction,
α(m(t)) is a unformal limit of the sequence of continuous functions on every K̃δi . That

is why α(m(t)) is continuous on every K̃δi , i.e. on any finite union
n∪

i=1

K̃δi . Evidently

lim
n→∞

µ(
n∪

i=1

K̃δi) = 1.

Taking into account the uniformal convergence on K̃δ for all k (see above) we derive
from boundedness of f(m(·)) that for k large enough∥∥∥∥∫

K̃δ

[αk(m(t))− α(m(t))]f(m(·))dµk

∥∥∥∥ < δ.

Since f(m(·)) is bounded, there exists a certain number Ξ > 0 such that |f(m(·))| < Ξ for
all m(·). Recall that all αk(m) and α(m) are uniformly bounded, i.e., their norms are not
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greater than some number Q > 0. Then, since

µk(C
0([0, T ], T n)\K̃δ) < δ

for all k large enough,∥∥∥∥∫
C0([0,T ],T n)\K̃δ

[αk(m(t))− α(m(t))]f(m(·))dµk

∥∥∥∥ < 2δQΞ

for all k large enough. Since δ is an arbitrary positive number,

lim
k→∞

∫
C0([0,T ],T n)

[αk(m(t))− α(m(t))]f(m(·))dµk = 0.

The function α(m(t)) is µ-a.s. continuous and bounded on C0([0, T ], T n) (see above). Since
in addition the measures µk weakly converge to µ, by Lemma from [6, section VI.1]

lim
k→∞

∫
C0([0,T ],T n)

α(m(t))f(m(·))dµk =

∫
C0([0,T ],T n)

α(m(t))f(m(·))dµ.

Evidently

lim
k→∞

∫
C0([0,T ],T n)

[
(m(t+∆t)−m(t))(m(t+∆t)−m(t))∗

∆t

]
f(m(·))dµk =

=

∫
C0([0,T ],T n)

[
(m(t+∆t)−m(t))(m(t+∆t)−m(t))∗

∆t

]
f(m(·))dµ.

Thus,

lim
∆t→0

∫
C0([0,T ],T n)

[
(m(t+∆t)−m(t))(m(t+∆t)−m(t))∗

∆t
−

− α(m(t))

]
f(m(·))dµ = 0.

Since f(m(·)) is an arbitrary bounded continuous function, measurable with respect to
Nt, this means that D2ξ(t) = α(ξ(t)). But by construction α(ξ(t)) ∈ α(ξ(t)) µ-a.s.

Next step deals with the current velocity of the solution. By construction DSξk(t) =
vk(t, ξk(t)) for all k. This means that for every real bounded continuous function f on
C0([0, T ], T n), measurable with respect to Nt, for all k the equality

lim
∆t→0

∫
C0([0,T ],T n)

[
m(t+∆t)−m(t−∆t)

2∆t
− vk(m(t))

]
f(m(·))dµk = 0

holds.
Specify an arbitrary ε > 0. Since µk weakly converges to µ, there exists K(ε) such

that for k > K(ε)∥∥∥∥∫
C0([0,T ],T n)

[
m(t+∆t)−m(t−∆t)

2∆t

]
f(m(·))dµk−

−
∫
C0([0,T ],T n)

[
m(t+∆t)−m(t−∆t)

2∆t

]
f(m(·))dµ

∥∥∥∥ < ε

56 Journal of Computational and Engineering Mathematics



COMPUTATIONAL MATHEMATICS

and ∥∥∥∥∫
C0([0,T ],T n)

f(m(·))v(m(t))dµk −
∫
C0([0,T ],T n)

f(m(·))v(m(t))dµ

∥∥∥∥ < ε.

With the same arguments as above, by the use of Egorov’s theorem we prove that

lim
k→∞

∫
C0([0,T ],T n)

[vk(m(t))− v(m(t))]f(m(·))dµk = 0

and that v is continuous on the set of complete measure. Recall that v is bounded as a
selector of bounded set-valued mapping.

Then by Lemma from [6, section VI.1] we obtain

lim
k→∞

∫
C0([0,T ],T n)

v(m(t))f(m(·))dµk =

∫
C0([0,T ],T n)

v(m(t))f(m(·))dµ.

Evidently

lim
k→∞

∫
C0([0,T ],T n)

[
(m(t+∆t)−m(t−∆t))

2∆t

]
f(m(·))dµk =

=

∫
C0([0,T ],T n)

[
(m(t+∆t)−m(t−∆t))

2∆t

]
f(m(·))dµ.

Thus,

lim
∆t→0

∫
C0([0,T ],T n)

[
(m(t+∆t)−m(t−∆t)

2∆t
− v(m(t))

]
f(m(·))dµ = 0.

Since f(m(·)) is an arbitrary bounded continuous function, measurable with respect to
Nt, this means that DSξ(t) = v(ξ(t)). But by construction v(ξ(t)) ∈ v(ξ(t)) µ-a.s. This
completes the proof.
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О СТОХАСТИЧЕСКИХ ДИФФЕРЕНЦИАЛЬНЫХ
ВКЛЮЧЕНИЯХ С ТЕКУЩИМИ СКОРОСТЯМИ II

Ю. Е. Гликлих, А. В. Макарова

Получены теоремы существования решений стохастических дифференциальных
включений, заданных в терминах так называемых текущих скоростей (симметриче-
ских производных в среднем, прямых аналогов обычных скоростей детерминирован-
ных систем) и квадратичных производных в среднем (дающих информацию о коэффи-
циенте диффузии) на плоском n-мерном торе. Правые части и для текущей скорости,
и для для квадратичной производной многозначны и удовлетворяют некоторым есте-
ственным условиям, при которых они имеют ε–аппроксимации, которые поточечно
сходятся к измеримым по Борелю селекторам соответствующих многозначных отоб-
ражений.

Ключевые слова: производные в среднем, текущие скорости, дифференциальные
включения.
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