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THE BARENBLATT — ZHELTOV - KOCHINA MODEL
WITH ADDITIVE WHITE NOISE IN QUASI-SOBOLEV
SPACES
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In order to carry over the theory of linear stochastic Sobolev-type equations to quasi-
Banach spaces, we construct a space of differentiable quasi-Sobolev "noises" and establish
the existence and uniqueness of a classical solution to the Showalter — Sidorov problem
for a stochastic Sobolev-type equation with a relatively p-bounded operator. Basing on the
abstract results, we study the Barenblatt — Zheltov — Kochina stochastic model with the
Showalter — Sidorov initial condition in quasi-Sobolev spaces with an external action in the
form of "white noise".
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Introduction

Consider the space [, of sequences u = (uy, ug, ...) of real numbers with the quasi-norm

% .
gllull = (Zluk|q) 5
k=1

where ¢ € R;. The definition of quasi-norm | - || on a real subspace Y differs from the
definition of the norm || - ||, only in the triangle inequality axiom

ullw + ol < Clulfull + glfol),

with a constant C' > 1. In the case of the space [, the constant is C' = 923" for q € (0,1)
and C =1 for ¢ € [1,+00). It is well-known (see Lemma 3.10.1 in [1] for instance) that
the quasi-normed space {4 = (4, || - ||) is not in general normable although metrizable;
that is, on the quasi-normed space 4 there is a metric which agrees with some power of
the quasi-norm (| - ||. Hence, the concepts of fundamental sequence and completion make
sense in a quasi-normed space. A complete quasi-normed space is called a quasi-Banach
space. Henceforth, for definiteness, we regard the Banach spaces [, with ¢ € [1,400) as
quasi-Banach spaces.

Given a monotone sequence {A,} C R, with klim A = 400, construct the quasi-
—00

Sobolev space

X/ m q

= {u = (uy,us,...) : Z </\k2 |uk\> < oo} , meR, geR,.
k=

1
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This is a quasi-Banach space with the quasi-norm

lul = (i (v uk)q);;

k=1

moreover [2], the embedding [;* — I7! is dense and continuous for m > n. On I* define the
Laplace quasi-operator Au = (Ajug, A\au, ...), which is continuous as A : 12’”2 — 177" for all
q € R, and m € R. The Barenblatt — Zheltov — Kochina model, describing the filtration
of fluid in a medium with cracks and pores, in quasi-Sobolev spaces reads as

(A= MNuy = alu+ f. (0.1)

Sufficient conditions were determined in [2] for the existence of a unique solution u in
C([0,7); 17"2) N C'((0,7); 17**2) to the Showalter — Sidorov problem

(A — A)(u(0) —ug) = 0 (0.2)

for (0.1) with arbitrary 7,q € Ry, m,A € R, ug € "™, and f € C*([0,7);17").

The goal of this note is, firstly, to extend the concept of white noise [3] to the spaces
I, and secondly, to consider the stochastic version [4] of problem (0.1), (0.2) in these
spaces.

1. White Noise in Quasi-Sobolev Spaces

The spaces C'Ly of random processes (C'Ly(e, 7) with intervals (g,7) C R) whose
Nelson — Gliklikh derivatives through order [ € {0} UN are almost surely (a.s.) continuous
on (¢,7) (that is, a.s. all trajectories of these derivatives are continuous on (e,7)) were
considered for the first time in [4]. An example is the Wiener process

sty =>"¢, sing(%—i— 1)t (1.1)
k=0
modeling Brownian motion on a line in the Einstein — Smoluchowski theory because
o(k) -
B (t)= (-1 @i —1)2t)FB(t) for all t € R, and k € N (1.2)

i=1

according to Gliklikh’s theorem ([4], Theorem 1.2). Recall that & are independent

E(Qk + 1)]72, for

Gaussian variables with expectation E§, = 0 and variance D¢, = [2

ke {0} UN.
Introduce now the space I7'Ly of sequences of random variables w = (w1, ws, ...) with
the quasi-norm

Pl = (3 rDw? )’ ge Ry, meR
k=1

These 1;"La are obviously quasi-Banach spaces, and by analogy with quasi-Sobolev spaces
we call them quasi-Sobolev stochastic spaces. Indeed, the embedding 1" Ly < 1j/ L is dense
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and continuous for all m > n and ¢ € R, , and in addition, the Laplace quasi-operator
A l;”+2L2 — 17"y is linear, continuous, and even continuously invertible for all m € R
and ¢ € R,.

Furthermore, introduce the spaces C'l7"Ly (meaning C'17'Ly(e, 7), where (e,7) C R)
of random processes 1 = (n1,m2, ...) with n, = ni(t) for t € (¢, 7) and k € N, whose Nelson
— Gliklikh derivatives through order [ € {0} UN are a.s. continuous on (¢, 7). An example
is the Wiener process

Wys = (b1, Ba, ), (1.3)

where 3 = Bk (t) for t € R, are Brownian motions of the form (1.1). By Gliklikh’s theorem,
W,s € C'I"Ly for all I € {0} UN provided that the series

YAl (1.4)
k=1

converges. To find conditions for this convergence is the subject of future research. Here
we observe that for m = —2¢~! and \; = k? the series (1.4) converges. Following [3, 4],

we refer to the Nelson — Gliklikh derivative Vf/qs (t) = (2t)"'W,s(t) of the Wiener process
W,s(t) as white noise.

2. The Barenblatt — Zheltov — Kochina Stochastic Model

Take U = IZ’HQLQ and § = ITLQ with m € R and ¢ € R,. Consider the Barenblatt —
Zheltov — Kochina stochastic model with the Showalter — Sidorov condition (0.1), (0.2).
Fixing a, A € R, construct the operators L = A — A and M = aA, where A is the Laplace
quasi-operator. Define the operator A='u = {)\,;luk} and call it the Green quasi-operator.
Consider L, M € L(;F) (see [2]); moreover, L is a Fredholm operator for all A € R.
Therefore, we can reduce the Barenblatt — Zheltov — Kochina stochastic equation (0.1) to
the linear stochastic Sobolev-type equation

L= Mn + Nw, (2.1)

where n = n(t) is the required random process, while w = w(t) is a given one, on the
interval (0, 7). The operator N € L(4; §) is to be specified below.

Introduce the L-resolvent set p"(M) = {u e C: (uL — M)™' € L(F;4)} and the L-
spectrum (M) = C \ p“(M) of the operator M. If the L-spectrum o%(M) of M is
bounded then M is called an (L, o)-bounded operator. In this case there exist projections

1 1
P= o [ REODAne L), Q= %/Lﬁ(M)du € L(F).
v o
Here R/ (M) = (uL — M)~'L is the right and L}(M) = L(pL — M)~' is the left L-
resolution of M, while the closed contour v C C bounds a region including o’ (M). Put
U = ker P, W' = imP, F° = kerQ, and §F' = im@Q, and denote by L, and M, the
restrictions of L and M to U* for k = 0, 1.

Theorem 1. (Splitting theorem [5|) If M is an (L,o)-bounded operator then
(i) we have Ly(My) € L(UF; %) for k=0,1;
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(ii) there exist operators My "' € L(F°;U°) and Ly' € L(FHUb).

Construct the operators H = My'Ly € L(U°) and S = LM, € L(UY).
An operator M is called (L, p)-bounded, with p € {0} UN, whenever oo is a removable
singular point (that is, H = O when p = 0) or a pole of order p € N (that is, H? # O and
HP™' = Q) of the L-resolution (uL — M)~ of M.

Take an (L, p)-bounded operator M with p € {0} UN. Impose on (2.1) the Showalter
— Sidorov initial condition

[REOD]™ (n(0) — &) = 0. (2:2)
Below we consider also the weak Showalter — Sidorov condition (in the sense of Krein):
. L p+1 . .
Jim [RED]™ (1 (1) = &) = 0. (2.3)

Definition 1. Refer to a random process n € C'17'Ly(0,7) as a (classical) solution to
(2.1) whenever almost surely all its trajectories satisfy (2.1) for all t € (0,7). Refer to
a solution n = n(t) to (2.1) as a (classical) solution to problem (2.1), (2.2) whenever it
also satisfies (2.2).

Remark 1. In the case that M is (L, 0)-bounded, conditions (2.2) and (2.3) are equivalent
to the following conditions respectively:

L(1(0) &) = 0 and Jim L(n(t) — &) =0. (2.4)

Theorem 2. Given an (L, p)-bounded operator M with p € {0}UN, for every N € L(;F),
every random processes w = w(t) satisfying (I — Q)Nw € CPHI;”LQ and QNw € CI'Ly,
and every random quantity § € 17" Ly independent of w for all fived t € (0,7) there ewists
a unique solution n € Cllg”Lg to problem (2.1), (2.2), which, moreover, is of the form
t
P o (n)

n(t) = U + / U™L7'QNw(s)ds — Z HIM7' T - Q)N w  (t). (2.5)

0 n=0

Remark 2. We can prove Theorem 2 by analogy with the deterministic case [5]. However,
as the white noise w(t) = (2t)"'W,s(t) is not differentiable at ¢ = 0, it cannot appear in
the right-hand side of (2.1). A way around this obstacle, proposed in [4, 6, 7], relies on
limit passage. To use this approach, rearrange the second term in the right-hand side of
(2.5) as

t o

JUSSLTIQN Wos (s)ds =

: t (2.6

LT'"QNWs(t) — U L' QNWys(e) + SP [ U L' QNW,s(s)ds.

Integration by parts makes sense for arbitrary € € (0,¢), with ¢ € R, by the definition of
Nelson — Gliklikh derivative. Passing in (2.6) to the limit as ¢ — 0, we obtain

t t
/ U™ L7'QN W,s (s)ds = LT'QNW,s(t) + SP / U™ LT'"QNW,s(s)ds.
0 0
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Proceed to problem (2.3) for the stochastic Barenblatt — Zheltov — Kochina equation
on R+7

Lil= My +N Wis, (2.7)
where W,s = W,s(t) is a Wiener process. Then the following statement holds.
Lemma 1. For all A € R and o € R\ {0} the operator M is (L,0)-bounded.

Theorem 3. For all A € R, a € R\ {0}, N € L(;F), and § € 1]'Ly independent of
W,s there exists a unique solution n = n(t) to problem (2.2), (2.7), which, moreover, is of
the form

n(t) = U'& + LT [QNW,s(t) + M, / U™ LT'"QNW,s(s)ds] — My (I — Q)N qus ().
0

Here -
Yo <o e fAE M, kEN;

U=< 1=
Ze“kt<-,ek>ek, it 3leN: A=)\,

kAl

Oé)\k

with the points p, = 3 of the L-spectrum of M, the sequence {{ox} = & € 17" Lo,

— Ak
and the vector e, = (0,...,0,1,0,...) in which the unity appears in slot k. The operators
Ly and M; ! are defined as

L7l = { {OV =) G}, EA# Neforall k € N;
' (A=) A=) TG, 0, (A = Ni) Gy o)y i FTEN A= N5

Mo — {a gk}, if A # A for all k € N;
1 (A, ooy oqcaN—imi—1, 0,y A, -+ 2), i 31 e N A=A

aric = f {0} i A Aufor all k€
0 (0,...,0,(0[[)\1)71Q,07...), if 3leN: A=\,

The projection is

D <en>ep, i A# N forall k€N

Q=< L
Z <-ep>ep, if ILEN: A=\,
k=1, k£l
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MOJOEJIb BAPEHBJIATTA — YKEJITOBA — KOUMHOU
C AAINTNBHBIM "BEJIBIM IITYMOM"
B KBA31MCOBOJIEBBIX ITPOCTPAHCTBAX

I''A. Csupudiwx, H. A. Manaxosa

B craThe paccmaTpuBaercs epeHOC TeOPUH JIMHEHHBIX CTOXACTHIECKUX YPABHEHU CO-
0OJIEBCKOTO THIA Ha KBAa3MOAHAXOBBI IMPOCTPAHCTBA. [l 9TOr0 CTPOSTCS MTPOCTPAHCTBA
nuddepeHIupyeMbix KBa3ncoboeBbix "rymMoB" U JJ0Ka3bIBAIOTCS CyIIECTBOBAHUE W €JUH-
CTBEHHOCTD KJIACCHIeCKoro perienns 3agaqdu [1loyosrepa — Cumoposa Jiist CTOXaCTUIECKOTO
ypaBHEHUsI CODOJIEBCKOI'O THUIIA C OTHOCUTEIBLHO P-OrPAHMYEHHBIM oreparopoM. Ha ocHoBe
abCTPAKTHBIX PE3YJIBTATOB MPOW3BOJUTCS MCCIEJIOBAHUE CTOXACTUYECKON Mojenn Bapen-
6starta — 2Kesrroa — Kounnoit ¢ nagansubiv yesosuem [lloyonrepa — CuopoBa B KBa3u-
c000JIEBBIX IIPOCTPAHCTBAX C BHEIIHMM Bo3jeiicTBueM B Buje "Gesoro mryma'.

Karouesvie caosa: ypasrenus coboresckozo muna, BUHEPOSCKUL NPOUECE, NPOU3BOIHAA
Heawvcona — Inukauzxa, "6eavili wym"; K6azucobosesvs npocmpancmea, cmoracmusveckoe
ypasherue Bapenbramma — 2Keamosa — Kowunoti.
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