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This article deals with numerical method for solving of the Dirichlet—Cauchy problem
for equation modeling the quasi-steady process in conducting nondispersive medium with
relaxation. This problem describes a complex electrodynamic process, allows to consider and
predict its flow in time. The study of electrodynamic models is necessary for the development
of electrical engineering and new energy saving technologies. The main equation of the model
is considered as a quasi-linear Sobolev type equation. The convergence of approximate
solutions obtained from the use of the method of straight lines with e-embedding method
and complex Rosenbrock method is proven in the article. The lemmas on the local error
and on the distribution of error are proven. Estimates of a global error of the method are
obtained.
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Introduction

During a research of quasi-steady processes in conducting nondispersive media [1],
the Dirichlet—Cauchy problem

u(z,t) =0, (z,t) € 0Q x (0,7), (1)

u(z,0) = ug(x),z € 0, (2)

arises for the equation modeling the quasi-steady process in conducting nondispersive
medium with relaxation

(Au — ®(u)), = P(u). (3)

Here 2 C R™ is a bounded domain with boundary of class C* representing an ideal
conductivity domain, 7 € R,, and an unknown function u represents a potential of
the electric field. Function ®(u) = |ul[P~?u,p > 2 is monotonely increasing and smooth.
Problem (1) — (3) was considered earlier in the [2], global solvability in strong generalized
meaning was established under some conditions. A number of similar, both in physical
interpretation and nature, mathematical models was considered in [3]. We consider the
equation (3) as a quasi-linear Sobolev type equation. It allows us to prove a solvability of
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problem (1) — (3) in a weak generalized meaning by methods developed for this class of
equations [4].

Applied nature of the problem causes the necessity of numerical modeling of the process
described by the problem (1) — (3). However the model is nonlinear; nonlinearity creates
significant difficulties in its consideration. But authors point out that such models, in
some cases, describe the physical process more qualitatively than simple linear analogues.
Since finding the analytical solutions and use of known numerical methods for such
models usually is not possible, development of new numerical methods and proof of
their convergence becomes important. In the article the method of straight lines with
e-embedding method and complex Rosenbrock method are used to solve the problem
(1) — (3) numerically. The lemmas on the local error and on the distribution of error are
proven. Estimates of a global error of the method are obtained.

1. Convergence

Consider the case of one space variable

(@ss — |x|(p()_25§)t :() |z [P 2a,

z(0,7) =0,

2l t) = 0, (4)
x(s,0) = xzo(s),s € (0,1).

Perform a decomposition of the problem (4). Suppose w = x4 — |z[’~> 2. We obtain
the problem
Wy = —W + Tgs,
0=w— x4 + |2|P %2,
z(s,t) =0, (s, t) € 02 x (0,7, (5)
x(s,0) = zo(s), s € Q,
w(s,t) =0,(s,t) € 02 x (0,71),
w(s,0) = zoss(8) — |wo[P 220, 5 € Q,
which is equivalent to (4).
The finite difference method is suitable for this problem. Proof of convergence of the

method will be performed in a grid norm C,,, (||U||Cw’ = Jnax |u;]). The idea of the

proof is similar to the idea of the proof of method convergence in [3]. We turn to the
differential-algebraic system:

AW = —W + MX, (©)
0=W - MX + |X]"*X.

The resulting system will be solved by one-step Rosenbrock method with coefficient
a= % + %z This method and its application to differential-algebraic systems by means of
the e-embeddings method was examined in detail in [5]. The reason of a choice of complex
coefficient was also given there.

We prove a theorem on the local error.

Theorem 1. There exist 9, hg such that for VT € (0,7), Vh € (0, ho) a local error of the
method for the problem (5) satisfies the estimates:

W&—w@+7) < Or(r% + 1),

Wh
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< O(7% + h?).

Cy,

X —m(t+7‘)‘

Proof.
Let X, W, W;, X; be values of the exact solution (5), taken in points of the spatial grid
at time ¢,,. On the next time step in accordance with the Rosenbrock method we have

(7)

W =W + Rek,
X = X + Rel.

Vectors E, [ are determined from the system of linear algebraic equations

k+ark —arMl=1(—W + MX),
—ak+a(M—(p-1)|XPH =W -MX +|XPP°X

T is a step of the time grid.

Suppose that . .
k=1W, 4+ ar? (=W, + MX,) + ki,

f: TXt + l_{
Taking into account the order of the local error of differential and algebraic component

of e-embeddings method [5], we obtain the system for ki, 1y

Wi+ ar* (=W, + MX,) + k1 + ar(tWs + ar2(=W, + MX,) + k1) — arM (17X, + 1;) =
=7(-W+ MX),
—ar(TWy 4+ ar?(=Wy+ MX) + k) +ar(M — (p— 1) | X" ) (r X, + 1) =
=7(W - MX + | X" X).
Further, considering
W, =-W + MX + O(h?),
(M —(p = 1) IX]") X, = W, + O(h?),
we get . . .
ki +atk, —arMl, = O(T%),
—a(ky = (M = (p = 1) |X["7)iy) = O(h* + 7).
Let (M —(p—1)|X["~*)~! = A. The operator A according to results in [3] is uniformly
bounded in the norm of C,,. Then

kv +atk; — arM Ak, = O(Th* + 1%).

The operator Sk: = —ak; + aM A/{:ql is uniformly bounded. Hence, there exists 7
such that the operator E' + 7.5 with 0 < 7 < 79 has an uniformly bounded inverse
ky = O(t® + 7h?). Therefore, [; = O(72 + h?), and finally

E:TWt+a72(—Wt+MXt) + O(73 + Th?), (8)
[=7X, + O(72 + h?).
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Substitute (8) in (6) and take into account that

2

W(t+71)=W(t)+7W, + %th + O(7),

X(t+71)=X(t)+7X,+0(?),

Wiy = =Wy + M Xy,
Rea = —.
ea = o
This completes the proof.
O
Definition 1. Let x(s,t) and w(s,t) be classical solution of the problem (6). We say that
a point (t,s,w,T) belongs to & - neighborhood of a classical solution if | — w(s,t)] < 0
and |z — x(s,t)| < 0.

Let (W, Xo) and (W, Xo) be two pairs of initial data, (Wi, X;) and (W7, X;) be values
at the next time layer obtained by the method (7) by e-embeddings with Rosenbrock
scheme with complex coefficients. We have

Lemma 1. Let p > 2. There exists 19, hg such that for 0 < 1 < 19, 0 < h < hg following
estimates are satisfied

)

w1 :

< (1+7L) HWO —W()’

+TP HXO — Xo‘

Cq w Cw

HX1 _X

SQHWO_WO‘ +QHXO_XO‘
Cu C

Cuw
Moreover, constants QQ, P, L, q do not depend on the initial data, and we can achieve ¢ < 1
by decreasing 6 and h.

Proof. .
Vectors @, are defined by the system

k+ark —arMl=71(—W + MX),
—ak4+a(M—(p-1)|XPH =W - MX +|X["*X.

Expressing [ from the second equation and substituting in the first equation, we find
that there exist 7y, hg such that for 0 < 7 < 79, 0 < h < hg vector k is uniformly bounded in
the norm of C,. It is following from the second equation that ['is also uniformly bounded.
Then, from the first equation it is following that £ = O(7). Substituting in the second one,
we obtain | = O(7 + 0 + h?). Differentiating the first and the second equations by W, we
get

ok
EiG = O(7),
ol 1 L b2
o a(M (p—1)|X["7)" 4+ O(7),

28 Journal of Computational and Engineering Mathematics



COMPUTATIONAL MATHEMATICS

ol

. < 0.

ow s¢

Cuw
By differentiating the first and the second equations by X, we get

ok

X o(7),
o SEORS (M= (p=1 X" =1 —2) X" x
0X o

xsignX (M — (p— 1) | X)) x (MX — | XPP2X) 4+ O(r) =
= —£+O(r+5+h2).

Note that for the Rosenbrock scheme with ov = 1, the value (1 — ReZ) = 0.
From (6) it follows that

=FE+0 —=0(1), =— =0
awo + (T)7 aWO ( )7 aXO (7—)7
8X1 9
=FE(1- .
9X, (1 — Re— )+O(T—I—(5+h)
Hence, we obtain the lemma, because by the decreasing of 7,4, h we can achieve
0X,
< 1.

x| =97

O
The following Lemma about the distribution of error is proven.

Lemma 2. If for the initial data (Wo, Xo) and (Wy, Xo) for Yk € [1,N], N7 < const,
(Wi, X)) and (Wy, Xx) are in §-neighborhood, then

W = Willy, < (W0 = Woll o, +7 1% — Kol )

[~ %

e, < C (o~

o T (T V) || X0 _XOHCU,) L g < 1.

Proof.
The proof is similar to the proof given in [3].

O
The global error theorem is proven.

Theorem 2. There exist 19, hg such that for ¥ € (0,7), Yh € (0, hy), for the problem
(5), global error of the method satisfies the estimates:

Wy —w(NT)|,, < C(*+ 1),

Xy —z(NT) < C(T* + h?).
| Mle.,

Proof.
The proof is analogous to the proof given in [3].
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CXO/JINMOCTD UYNCJIEHHBIX PEINIEHUN 3AJAYN
KOIIIN J1J1d MOJEJIN KBA3UCTAIIMIOHAPHOI'O
[IPOIIECCA B ITPOBOJSIIIEN CPEJE BE3 INCIEPCUU
C YYETOM PEJIAKCAIIUU

E. A. Boeamwipesa

B pabore paccmoTpen dncieHHBIN MeTO perenns 3aga4n Komm — dupuxie ajst ypas-
HEHWSI, MOJIEJIUPYIONIEr0 KBA3UCTAIMOHAPHBII ITPOTIECC B TPOBOJISAIIEH cpejie 6e3 JTUCIepCun
¢ yueroMm pejakcanuu. JlaHHas 3a/1a9a ONKMCHIBAET CJIOXKHBINA JIEKTPOIMHAMUIECKUN IIPO-
IIeCC, IO3BOJISIET PACCMaTPUBATH U MIPOTHO3MPOBATH €ro TedeHue BO BpemeHu. Vzydenue
SJIEKTPOJIMHAMUYECKIX MOJIEJIel HeOOXOUMO JIJIsl PA3BUTHS 3JIEKTPOTEXHUKU U pa3paboT-
KU HOBBIX 9Heprocoeperamonux texuosioruit. OCHOBHOE ypaBHEHNE MOJIEIN PACCMATPUBAET-
¢Sl KaK KBaswWJIMHEHOoe ypaBHeHUe cODOJIEBCKOTO Tuila. JlokazaHa CXOAMMOCTDH UHUCIEHHBIX
peHIeHI/II‘/’I7 MOJIYYE€HHbIX C HCIIOJIb30BaHUEM METO/a IIPpAMBIX B CO4Y€TaHUMU C METOJaMHu &-
BJIOXKEHUI U MeTonoM Po3eHOpOKa ¢ KOMILIEKCHBIM Ko3addumumenTom. [lomydennr omeHKn
rI00AIBHOI OIMMOKN METOIA.

Karouesvie crosa: memod Pozenbpoka, keasusuneiinoe ypasuerue coboiesckozo muna,
caaboe 0606UEHHOE PEWEHUE, YUCAEHHOE PEUWEHUE.
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