ENGINEERING MATHEMATICS

MSC 68M99 DOI: 10.14529/jcem160301

PROTECTION SYSTEM OF APPLICATIONS
ON "WINDOWS" PLATFORM ON THE BASIS
OF ACTIVITY PROFILE

N. O. Artes', nikas.artes@gmail.com,
S. M. Elsakov', esergeym@mail.ru.
1 South Ural State University, Chelyabinsk, Russian Federation.

The paper deals with a description of the developed prototype of application protection
module based on an activity profile. It is based on proactive protection technology.
A description of behaviors injected in controlled processes is given, and an architecture of the
security module and interactions of end-users with the system are considered. The module
is designed in C#.

Keywords: anti-virus software, malicious software, application activity profile, proactive

protection, DLL injection, interaction of malicious software with the system.

Introduction

A malicious software is any software designed to get an unauthorized access to
the computing resources of the computer, or to the information stored on the computer,
where the purpose is unauthorized use of the computer resources or to harm to the owner
of the information, or the owner of the computer, by copying, distortion, deletion or
substitution of information [1].

The reasons for the growth of thefts committed with the help of malicious software are
an increase of the number of malicious programs, an invention of new successful threats
by virus writers, the fact that viruses use the vulnerabilities that have not yet closed by
software manufacturers, incorrect security settings (including anti-virus ones) [2].

To organize an effective anti-virus system of network protection, it is important to
know actual ways of penetration of malicious programs into the network. Today a software
vulnerability, the Internet and websites, removable media, email are the most common
ways [3].

There are following "Kaspersky Lab" data during 2015. So, 121 262 075 unique
malicious objects (scripts, exploits, executables, etc.) were detected, ransomware programs
were detected on 753 684 computers of unique users, 179 209 computers were attacked by
cryptographers programs, 34% of Internet users computers at least once are subjected to
virus attack [4].

These statistics show that the risk of infecting of computer or workstation is enough
big. Therefore, an information security is an important issue to ensure the protection and
security of data.

2016, vol. 3, no. 3 3

N. O. Artes, S. M. Elsakov

1. Classification by Popular Software Protection Technology

Data security involves ensuring of data reliability and protection of data and
programs from unauthorized access, copy, modify. Protection of data and programs
from unauthorized access, copy, modification is implemented with software and hardware
techniques and technological methods. One of ways to protect data is to use anti-virus
software.

Antivirus programs use the following software protection technology [5]:

1. Signature detection method.

2. Methods of proactive protection of software and applications:
2.1. heuristic analysis,
2.2. behavioral analysis.

Signature method of detection is a scanner that scans files by comparing the signature
files with the dictionary.

A file is called infected, if any part of it is found in the signature database. This form
of scanning allows to determine the type of attack with high probability and without false
triggering. But there are drawbacks, such as inability to detect new viruses that do not
exist in the database. It requires constant updating of signature databases. Upon detection
of a new virus, its signatures are created as a result of the manual analysis of several copies
of a file belonging to a single virus. A signature should contain only unique lines of this
file, which are characteristic such that to ensure minimal possibility of false triggering.
It is quite time-consuming process, and a period of detection of the unique signatures of
malicious software can be a long time [5].

Heuristic analysis is a technological method of application protection, which is based on
the identification of the most probable behavior of malicious software, such that removal
or change of files.

Heuristic analysis technique allows to detect previously unknown infections, but
the technique is often prone to errors of false triggering and requires a complex manual
tuning, so it is rarely used.

Behavioral analysis technology is based on the interception of all important system
functions and installation of filters. It allows to monitor all activity on custom system.
Its advantages are the following. First is low consumption of resources, which are spent
only on an implementation of the functionality in the monitored system calls. Second,
the behavioral analysis allows to catch an early unknown virus. Also, in contrast to
the heuristic analysis, the behavioral analysis is quite simple to implement. The false
triggering is shortcoming of behavioral analysis technology.

The behavioral analysis is most effective to detect already studied, as well as previously
unknown, virus software. It was found during the considering of popular techniques of
software protection. Also, the behavioral analysis is the easiest to implement.

The most common technology of behavioral analysis is DLL injection [6]. DLL injection
is a technology of an interception of function calls in external processes in Windows.
Suppose an application runs. Then the operating system creates its process and then
exe-file is copied into memory. After that it is determined what kind of library (dll-files)
process needs to work (this information is recorded at the beginning of each exe-file),
these libraries are found (in the program folder and system folders), and then they are
loaded into the process memory. After that it is determined what kind of library functions

4 Journal of Computational and Engineering Mathematics

ENGINEERING MATHEMATICS

are used by the program and where they are (in what kind of library, and where it is
in the library). A table of functions import 7] is constructed. A part of it is shown in
Figure 1. The essence of DLL injection is a replacement of function address in the table
of functions import to address of the injection function (Fig. 2).

SomeApplication.exe

Somelibraryl.dll

0x00000015 - SomeFunctionl() |

Fig. 1. A Fragment of Table of Functions Import

This is done as follows. An additional library SomeLibrary2.dll, in which function
SomeFunction2() will be located, is developed. Next, the library is loaded into
the memory of another process, and the table of import functions is changed so that
now it contains the entry "function SomeFunctionl() — library SomeLibrary2.dll —
% function _address _SomeFunction2()%".

SomeApplication.exe

Somelibraryl.dll Somelibrary2.dll

| 0x00000015 - SomeFunctionl() ‘ [0x00000025 — SomeFunction2() |

Fig. 2. The Modified Table of Functions Import

2. A prototype of Application Protection Module Based
on the Activity Profile

The proposed application security module is based on DLL injection technology.

Architecture of active protection module has a multi-level template and is divided into
two parts. They are an injection layer and a layer of behavior of intercepted WIN API
functions in the selected process. A layer of behavior of active protection module has two
behaviors — data collection mode and protection mode. Module architecture is shown in
Fig. 3.

2016, vol. 3, no. 3)

N. O. Artes, S. M. Elsakov

On the interception layer the module injects one of two behaviors, which is described
in the layer of API functions behavior, in the selected processes.

In the data acquisition mode, an active protection module implements a behavior
that forces certain intercepted WIN API functions to add a directory visited by process,
a registry key, etc. to the white list file (which is the activity profile of the intercept
API function). In the protection mode, the module also injects behavior, which already
checks the activity of the same intercepted WIN API functions with the activity profile
constructed earlier.

Injection layer Behavior of the APl function layer

/ Information collection mode

Logs

Protection mode @

Application activity
profile file

API Injector \

Fig. 3. An Architecture of Active Protection Module

If the activities of the intercept WIN API function is not valid, then the module creates
an entry in the log and completes the work of WIN API functions as a fail.

Module architecture provides simple support for application and adding of new API
functions to intercept and new behavior for injection. The programmer can easily add
a new WIN API function to capture and implement a new behavior for these functions.

In order to limit the area of responsibility and to prevent conflicts, for each WIN
API function its own activity profile file having its own whitelist key is created. For each
selected process, in which the selected behavior is injected, a subdirectory to store files
of profiles activity for each intercept WIN API function is created.

The diagram of cases of active protection module use is shown in Fig. 4. In this diagram
of use cases in UML notation several "actors" are provided. Here the actors are used to
refer to a consistent set of roles that users can play in the process of interaction with
the planned system.

Consider the details of each actor.

1. "Administrator" is a user who has the right to choose the inject processes running
on a workstation, injecting of data collection behavior and active protection. Also
the administrator can view the file of profile of WIN API functions activity, and view
the log files in which system messages of program are written, as well as a directory
or system registry keys such that they do not belong to the profile activity file, but
intercepted WIN API functions are trying to access to them.

2. "User" differs from the administrator in the following way. He can not inject different
behaviors in any of the processes on a computer, but he can view the log file and
work in process with injected behavior of intercepted WIN API functions.

Consider every action in details:

6 Journal of Computational and Engineering Mathematics

ENGINEERING MATHEMATICS

1. Work in processes with injected behavior is an ability of user and administrator to
work in process such that that our module is connected to it.

Work in processes
with injected behavior
of intercepted

APl functions

View of logs

Protection
activation

_<<extend>>"

Choice of behavior
for injection

<<extend==

~ Activation of
information collect

Choice of processes
for injection

Administrator

Fig. 4. Diagram of Use Cases

2. View of the logs is an ability to view system messages and recorded directories or
registry keys, to which intercepted WIN API functions tried to get by not authorized
way.

3. Selection of processes for injection is an action associated with a selection of
the desired process from the list of running processes on the computer to inject
a certain behavior.

4. Selection of behavior for injection is an action, which consists of the following two
sub actions.

4.1. Activation of data collection is an injection of behavior of certain WIN API
functions interception in the selected process and a composition of the activity
profile of the so-called keys of white list that can be registry keys, directories,
[P-addresses such that intercepted WIN API function try to get access to them.
A selection of key of the white list or key of activity profile is determined by
the programmer. They are selected according to specific intercepted WIN API
function. For each intercepted WIN API function its own file of whitelist —
a profile of application activity — is created.

4.2. Activation of protection is an injection of behavior of interception of the same
WIN API functions into the selected process and an installation of the validity
of the access to the key of the activity profile such that the intercepted WIN
API function try to get access to them. Admission to the key is called not valid,
if it is not in the whitelist file. In this case, the key is recorded in the logs file
with information about WIN API function which tried to get access.

2016, vol. 3, no. 3 7

N. O. Artes, S. M. Elsakov

Conclusion

The developed active protection module is built on a behavioral protection technology,
DLL injection and a creation of activity profile files. The module protection from
known viruses increases with increasing of the number of WIN API functions, which are
intercepted by the module. There are a large number of WIN API functions in Windows.
Therefore an intercept of several WIN API functions is realized in the designed module for
demonstrative purposes. One can also note the advantage of this module in the Auto setting
of protection for activated mode of data collection. This allows to configure the active
protection module to the needs of a particular system. The module was analyzed from
the point of view of safety. It was tested. The source code is posted in the open access on
GitHub: https://github.com/NikArtes/Modul-of-active-protection

References

1. Official Website of Kaspersky Lab. The Classification of Malware, available
at: http://www.kaspersky.ru/internet-security-center /threats /malware-classifications
(accessed on 20 March 2016).

2. Official Website of Kaspersky Lab. What Conditions are Need to Spread Malware,
available at: http://www.kaspersky.ru/internet-security-center /threats /hacking-
system-vulnerabilities (accessed on 20 March 2016).

3. Artes N.O., Elsakov S.M. Comparative Analysis of an Interaction of Different Types
of Malware on the "Windows" System. Sbornik Trudov II Vserossijskoj Nauchno-
Prakticheskoj Konferencii — Proceedings of the II All-Russian Scientific-Practical
Conference. Chelybinsk, Publishing Center of SUSU, 2015, pp. 11-18. (in Russian)

4. Kaspersky Security Bulletin 2015. Summary Statistics for 2015, available
at: https:/ /securelist.ru/analysis/ksb /27543 /kaspersky-security-bulletin-2015-
osnovnaya-statistika-za-2015-god/ (accessed on 2 February 2016).

5. Shangin V.Ph. Information Security of Computer Systems and Networks. Moscow, 1D
"FORUM" — INFRA-M Publ., 2011. (in Russian)

6. Koziol J., Litchfield D. The Art of Hacking and System Protection. St. Petersburg,
Peter Publ., 2011. (in Russian)

7. Kaspersky K. Computer Viruses Inside and Outside. St. Petersburg, Peter Publ., 2012.
(in Russian)

Nikita O. Artes, Undergraduate, Department of Differential and Stochastic Equations,
South Ural State University (Chelyabinsk, Russian Federation), nikas.artes@gmail.com.

Sergey M. Elsakov, Candidate of Physico-Mathematical Sciences, Department of
Differential and Stochastic Equations, South Ural State University (Chelyabinsk, Russian
Federation), esergeym@mail.ru.

Received June 11, 2016

8 Journal of Computational and Engineering Mathematics

ENGINEERING MATHEMATICS

YK 4.056.5 DOI: 10.14529/jcem160301

CHUCTEMA 3AIIINTHI IPUJIOXKEHNN HA IIJIAT®OPME
<WINDOWS> HA OCHOBE IIPO®NJIAd AKTUBHOCTU

H. O. Apmec, C. M. Eacaxos

B pabore paccmarpuBaercs omnmcaHue paspabOTAHHOTO TPOTOTUIA MOJLYJIsI 3aIlUThI
MIPUJIOXKEHNH Ha OCHOBE TMPOMUIA aKTUBHOCTH. 338 OCHOBY ObLIa B3ATa TEXHOJOTHUS IIPO-
aKTUBHON 3aIuThl. Bblia pazobpana apXuTEeKTypa MOMIYJIS 3allUThI, JaHO OINCAHKUE IIOBE-
JIEHUI, WHXKEKTUPYEMbBIX B IOJKOHTPOJIbHBIE IIPOIECCHI, U PACCMOTPEHBI B3aUMOJIEHCTBUS
KOHEYHBIX I10JIb30BaTe el ¢ cucreMoii. Moysb paspaboran Ha si3bike CH#.

Karuesve caosa: anmusupycras npozpamma, epedonocroe I10, npoduav axmueHo-
CMU NPUAOACEHUT, NPOGKMUBHAA 30ULUMG, UHIcekmuposarue dll, e3aumodeticmeue spe-

donocHOU NPo2pammbvL ¢ CUcCmemot.

JImreparypa

1.

Odruyuanrvroit catim aabopamopuu Kacnepcrozo. Kaaccupurayun 6pedoHoCHbT npo-
epamm, nocryi: http://www.kaspersky.ru/internet-security-center /threats /malware-
classifications (3ampoc 20 Mapra 2016).

Oduyuanvroiti catim aabopamopuu Kacnepekozo. Kakue ycaosus Hysichv, OAf pac-
npocmpanenus, 6pedoHoCHuT npoepamm, noctyir: http://www.kaspersky.ru/internet-
security-center /threats/hacking-system-vulnerabilities (3ampoc 20 Mapra 2016).

. Aprec H.O. CpaBuure/ibHBII aHAIN3 B3aMMOJEHCTBAST PA3HBIX BUJIOB BPEIOHOCHBIX

nporpamm Ha cucremy <Windowss / H.O. Aprec, C.M. Escakos // C6opHUK Tpy/I0B
IT Bcepoccniickoit HaydHO-TIpakTrdecKoit kKondepennun. — Yensaobunck: M3parenbekuit
nentp FOYpI'Y, 2015. — C. 11-18.

Kaspersky Security Bulletin 2015. Ocwosnaa cmamucmuka 3a 2015 e20d, no-
CTYIIL: https:/ /securelist.ru/analysis/ksb /27543 /kaspersky-security-bulletin-2015-
osnovnaya-statistika-za-2015-god/ (3ampoc 2 @espasist 2016).

[Manbrun, B.®. Uudopmannonnast 6e30MacHOCTh KOMITBIOTEPHBIX CHCTEM U ceTell /

B.®. Mansrun. — M.: I <«®OPYM> — NHOPA-M, 2011.

Kosnos, [Ix. Uckycerso B3moma u samursl cucrem |/ JTx. Kosuon, 1. JTuadwm. —
CII6.: ITurep, 2011.

Kacnepcku, K. Kommbiorepusie Bupycer usnyrpu u caapyzxu /| K. Kacnepcku — CII6.:
[Turep, 2012.

Apmec Huxuma Onezosuy, mazucmpanm, xagpedpa dudhepeniuarvhoix u cmoxacmu-

weckur ypasruenut, FOocno-Yparverut 2ocydapemeennvii yrusepcumem (2. Heaabunck,
Poccutickas @edepayus), nikas.artes@gmail.com.

Eacaxos Cepeeti Muzatinosuy, xandudam Guaurko-mamemamuseckur Hayx, xagpedpa

dudpdeperyuarvrnr u cmoxacmuveckux ypashenut, [Oowcno-Yparverxui 2ocydapemeen-
nol yrusepcumem (2. Yeaabunck, Poccutickan Pedepayus), esergeym@mail.ru.

Hocmynunaa 6 pedaxyuro 11 urors 2016 r.

2016, vol. 3, no. 3 9

