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MATHEMATICAL BASES OF OPTIMAL MEASUREMENTS
THEORY IN NONSTATIONARY CASE

M.A. Sagadeeva, South Ural State University, Chelyabinsk, Russian Federation,
sam79Q74.ru

Recently, the use of mathematical results is becoming increasingly vast field of study
for solving technical problems. An example of such approach is the recently developed
optimal measurement theory. In the article the mathematical reasoning for solution of the
measurement problem of dynamically distorted signal, taking into account the multiplier
effect on the measuring transducer (MT). Making such a change can improve the adequacy of
the mathematical model of the MT, namely, the problem is considered under the assumption
that the MT are subject to change over time, which allows us to describe a decrease in
sensitivity of elements of the MT.

Keywords: monstationary Sobolev type equations, relatively bounded operator,
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Introduction

The methods for solving ill-posed problems originally used in solving problems of the
dynamical measurements theory (see [1]). On the basis of the methods of automatic control
theory, A.L. Shestakov and his students proposed and justified technical hypotheses to
solving the reconstruction problem of dynamically distorted signal [2]. However, increasing
precision requirements has led to creation other methods for solving such problems. By
virtue of what to solve this problem A.L. Shestakov and G.A. Sviridyuk proposed to use the
methods of optimal control theory [3|. The problem resulting from this, it was suggested
to call the problem of optimal measurement [4]. Based on the results of the numerical
solution for Leontiev type system [5, 6] A.V. Keller brought this mathematical model "to
the number” [7]. The first review of this approach was published in 2014 [8]. The resulting
theory will be called the theory of optimal measurement of Shestakov — Sviridyuk — Keller.

Today this theory is rapidly developing. For example, the optimal measurement
problem is investigated in spaces of "noise” [9, 10]. In addition, based on the results |11, 12],
the problem of optimal measurement began to be studied in the nonstationary case, i.e.
when the parameters, witch describing the measuring transducer, may change over time.
The main purpose of this article is the full mathematical justification for the optimal
measurement theory of Shestakov — Sviridyuk — Keller in the nonstationary case.

The basis of the theory of optimal measurement in the nonstationary case is
a presentation the model of the measuring trasducer (MT) via a nonstationary Leontief
type system

Li(t) = a(t)Mxz(t) + Bu(t), kerL # {0}, (1)
y(t) = Nz(t), (2)
where x = (21,9, ...,2,) and & = (&1, 29, ..., T,) are the vector-functions of a state and

a rate of state change for the MT respectively; n is a dimension of the state vector-function.
Square matrices L and M of order n, representing the mutual velocity of state changes and
the actual state of the MT. Note that the matrix L is degenerate. The scalar function a :
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(0,T) — R, describes the time variation of the parameters of the MT. B and N are square
matrices of order n, characterizing the interference of the measurement parameters and
the relationship between system state and observation correspondingly. It should be noted
that systems (1), (2) are also called descriptor system (see, for example,[15]). To obtain
a mathematical model of the measurement transducer the system (1), (2) supplement the
initial condition Showalter — Sidorov

[Re (M) (2(0) — @) = 0. (3)
Is required to find the optimal measurement v € {,; almost everywhere on (0, T'), satisfying
the problem (1)—(3) and the condition

J(v) = i J 4
('U) (u,m(ur)r)lgillad xX (U) ( )

for functional

=3 [0 s @de + > [ (Na® 0. @) it

q=0 q=0

where 0 < k < p+1, N, (¢ = 0,1,...,p+ 1) are square positive definite matrices of
order n. Here u = (uq,us,...,u,) and y = (y1,Y2,...,Ym) are the vector-functions of
measurements and observations for the MT correspondingly; vo = (Y01, Yoz, - - -  Yom) are
the observations obtained in the field experiment results. Problem (1)—(5) is called the
optimal measurement problem. Solution of this problem allows reconstructing the signal
v € Uyq, corresponding to the results of observations yq.

The theory of stationary Sobolev type equations based on the phase space method
[16, 17]. This theory became the basis of the optimal measurement theory and is developing
very rapidly, as can be seen by a large number of monographs, in whole or in part devoted
to their study [18-25]. Moreover, Sobolev type equation began to be considered in quasi-
Banach spaces [26-28|, as well as in spaces of "noises” |29, 30].

Article except for the introduction and bibliography contains four parts. In the first
part the relatively p-bounded operators are described. Also in this part degenerate groups
and flows of operators are considered. The second part consists the solutions of the initial
value problems for non-stationary Sobolev type equations obtained using degenerate flows
of operators. In the third part of the existence and uniqueness of solutions of optimal
control problem of solutions for non-stationary equation is proved. In the fourth part
consists the statement of the optimal measurement problem and the existence of solutions
for this problem, based on the results of the third part. Bibliography is not exhaustive and
represents only the tastes and preferences of the author.

It is a pleasant duty to express my sincere gratitude to my scientific advisor Professor
A.L. Shestakov for attention to this work, Professor G.A. Sviridyuk for strict, but
constructive criticism, as well as the staff of the department of Mathematical Physics
equations for useful discussions and interest in this work.

1. Relatively p-Bounded Operators and
Degenerate Groups and Flows of Operators

Let X and Q) are Banach spaces. Operator L € £(X;%)) is linear and continuous and
operator M € CI(X;9)) is linear, closed and densely defined in X. Besides the operator L
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is degenerate (ker L # {0}). By [20, 31| sets p“(M) = {u € C: (uL — M)~' € L(D;X)}
and oL(M) = C\ p*(M) are called L-resolvent set and L-spectrum of operator M. By the
results of |20, 31| set p*(M) is open and that’s why L-spectrum of operator M is always
closed.

L-resolvent set of operator M can be an empty set, for example, if ker LNker M # {0}.
We suppouse that p?(M) # @ and consider the operator-valued functions (uL — M)~}
R (M) = (uL — M)™'L, L(M) = L(pL — M)~" of a complex variable y € C with
domain p*(M), which will be called L-resolvent, right and left L-resolvent of operator M
respectively. Also in view of the results [20, 31| the L resolvent, right and left L-resolvents
of operator M are holomorphic in pL(M).

Definition 1. Operator M is called spectrally bounded with respect to operator L (or
shortly (L, o)-bounded), if

Ir>0 YueC (ju|>r)= (uecp“(M)).

Let operatop M be a (L,o0)-bounded. We take in complex plane C closed circuit
v =A{p € C:|u = h > r}. Then the integrals of holomorphic operator-functions in
a closed circuit are worthwhile

p-L RY(M)dp, Q= i/Lﬁ(M)du. (6)

211 211
¥ ¥

If operator M is (L, o)-bounded, then operators P € £(X) and Q € £(Q)) are projectors
20, 31].

Denote X° = ker P, ° =kerQ, X'=im P, 2'=im Q. So we have X = X" @
XL 9 =99 By L (M) denote restriction of operator L (M) on X* (dom M, =
dom M NX*), k=0,1.

We formulate the splitting theorem.

Theorem 1. (G.A. Sviridyuk) [20, 31] Let operator M be a (L, o)-bounded. Then
() Li € L5 D), k=0,1:
(i) My € CL(E0%), M, € £(XL1):
(iii) operators Lyt € L(P; XY) and Myt € L(D% X°) are exits.

Infinity is called a pole of order p € Ny (= {0} UN),if H =0 (p =0) or H? # O and
HP™ = O with p € N.

Definition 2. Let oo is pole of order p € Ny for L-resolvent of operator M. Then (L, o)-
bounded operator M is called (L, p)-bounded.

Corollary 1. [32]| Let operator M be a (L,p)-bounded (p € Ny). Then

RRT L p+1 ET L p+1
P = lm (uR,(M))", Q= lim (uLy(M))"".
Definition 3. A one-parameter family X* : R — L£(X) is called degenerate group of
operators, if the following conditions are met
(i) X° = P;
(i) X' X = X' for all ¢, s € R.

2016, vol. 3, no. 3 21



M. A. Sagadeeva

Degenerate group of operators called of analytical if it has an analytic continuation to
the whole complex plane C retaining properties (i) and (ii) of the definition of 3.

Theorem 2. |20, 31| Let operator M be a (L,c)-bounded. Then there exists analytical
group {X" € L(X):t e R} {Y' € L(Y) : t € R}) and its operators can be represent by
Danford—Taylor type integrals

1
=5 /RL et du Y= 5 LL(M)e“td,u , (7)

v

where close circuit vy = {pu € C: |u| = h > r}.

Corollary 2. [32] Let operator M be a (L,p)-bounded (p € Ny). Then operators of group
{Xte L(X):teR} {Y'e€ L®):t eR}) can be represent by the Hille-Widder—Post

approximations
k b k b
X' = lim (—R%(M)) (Yt = lim (-L%(M)) ) : (8)
k—oo \ Tt % k—oo \ t %

Definition 4. A two-parameter family X(-,-) : R x R — £(X) is called degenerate flows
of operators, if the following conditions are met

() X(t,t) = P;

(i) X(t,8)X(s,7) = X(t, 7).

Degenerate flows of operators called the analytical if its operators can be analytically
continued to the whole complex plane C retaining properties (i), (ii) of the definition 4.

Let operator M be a (L,p)-bounded (p € Ny) and function a € C(R;R). By the
analogy with (7) consider with s,¢ € R and close circuit v = {u € C: |u| =h > r}

X(t,s) = 271m / RE(M) exp (u f’ a(g)dg) du,  s<t (9)

v

Theorem 3. (32| Let operator M be a (L, p)-bounded (p € Ny) and function a € C(R;R).
Then family {X(t,s) € L(X) : t,s € R} defined by (9) is an analitical degenerate flows
of operators.

Similarly, corollary 2 we have the following

Corollary 3. [32]| Let operator M be a (L, p)-bounded (p eNy) and function a € C(R;R,).
Then operators of the flow {X(t,s) € L(X) : t,s € R} u {Y(t,s) € L(D) : t,s € R} can
be represented by Hille-Widder—Post approximations

X(t,5)= lim ((L - %Mfta(g)dg)_L) Y(t,s)= lim (L <L - %Mf‘ a(g)dg“)_ ) (10)
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2. Solvability of Initial Problems
for Non-stationary Sobolev Type Equations

Let X and 9) are Banach spaces. Operators L € L(X;9) and M € CI(X;9)). On the
interval J C R consider the Cauchy problem (¢y € J)

x(tg) = o, (11)
for homogeneous non-stationary equation
Li(t) = a(t)Mx(t), (12)
where function a : J — R to be further defined.

Definition 5. Vector-function z € C'(J; X) is called solution of equation (12), if it satisfies
this equation on J. Solution of equation (12) is called solution of Cauchy problem (11),
(12), if it also satisfies to (11).

Closed set B C X is called phase space of equation (12), if

(i) any solution z(t) of equation (12) lies in P (pointwise);

(ii) for any xo from ‘P there exists unique solution of the Cauchy problem (11) for
equation (12).

In addition to equation (12) consider the precise equivalent equation

L(vL — M) Yy =aM(vL — M) 'y, v e p*(M). (13)

Theorem 4. (32| Let operator M be a (L, p)-bounded (p € Ny) and function a € C(R,R,).
Then the set X' (') is a phase space of equation (12) ((13)).

The flows of operators X(-,-) : R x R — L(X) is called flows of solving operators
for equation (12), if for any xy € X the vector-function z(t) = X (¢, )z is a solution of
equation (12) by the definition 5.

Consider the Showalter—Sidorov problem

P(x(0) = x0) =0 (14)
for non-homogeneous equation
Li(t) = a(t)Mx(t) + g(t) (15)
with function ¢ : § — 2. Denote (Iy — Q)g(t) = ¢°(t).

Definition 6. Solution of equation (15) is called solution of Showalter—Sidorov problem
(14), (15), if it satisfies (14).

Theorem 5. [32] Let 0,T € J, operator M be a (L, p)-bounded (p € Ny) and function a €
CPH([0,T];R,). Then for all xg € X and vector-function g : [0,T] = ), such that Qg €
CH[0,T]; DY) and ¢° € CPT([0,T);D°) there exists a unique solution x € C1([0,T]; X) of
Showalter—Sidorov problem (14) for equation (15), given by the next formula

z(t) = X (t,0) Pz + /X(t, s)L7'Qg(s)ds — Z H" M (a(lt) %) ‘(;((tt)) (16)
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If in addition initial data xq satisfies

_ - kas—1 1 d kgom)
=P ==3 2105 (57)

k=0

then solution (16) is a unique solution of the Cauchy problem (11), (15).

3. Solutions for Optimal Control Problem

Let X, 9 and U are Hilbert spaces. On the interval [0,7) C Ry (7" < +00) consider
Showalter—Sidorov problem
P(z(0) — x9) =0, (17)
for equation
Li(t) = a(t)Mx(t) + g(t) + Bu(t). (18)

Here operators L € L(X;9), M € CI(X;%) and operator B € L£(;9)). Function a :
[0,7) — R, and vector-functions w : [0,7) — Y and ¢ : [0,7) — 2 would be defined in
future.

Definition 7. The vector-function z € HY(X) = {z € Ly(0,T;X) : @ € Lo(0,T;X)} is
called strong solution of equation (18), if it almost everywhere in (0, 7") transform equation
(18) to right equality. The strong solution x = x(t) of equation (18) is called strong solution
for Showalter—Sidorov problem (17), (18), if it is satisfied (17).

Construct the space HPT1(Q)={6€ Ly(0,T;2) : £€PTVe L,(0,T;9), p€Ny} which is
pH

T
a Hilbert space with a inner product [£,7n] = Z / <§(q), 77(‘1)>m dt.
0

q=0
By the theorem 5 we have the following

Theorem 6. Let the operator M be a (L,p)-bounded (p € Ny) and function a €
CPHY([0,T);Ry). Then for any zo € X, g € HP™ () and u € HPT(U) there is exist
a unique solution x € HY(X) for Showalter—Sidorov problem (17), (18) and it has the form
t
w(t) = X(t,0)Pxo + [ X(t,s) L7 Q(g(s)+Bu(s))ds—
0

D 1 d\ " g(t)+Bult
Sy <1—Q>(a(t)%) e (h)

k
where the symbol (—%) means the continuous application this operator k times.

a(t)

Let 3 is a Hilbert space and operator C' € £(X;3). Consider the quality functional in
the form

T koL
J(z,u) = Z/ |29 — zc(lq)H%dt + Z / <Nqu(q), u(q)>u dt, z = Clu, (20)
0 0
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where 0 < k < p+1. Operators N, € L(Y), ¢ =0,1,...,p+1 are self adjoin and positively
defined ones, z4 = z4(t, s) is a observations from some space of observations 3. Remark
that if z € H'(X) then z € H'(3). By analogy with H?*!(2)) denote the space HP™!(Ll),
which is a Hilbert one although i is a such space. We distinguish a convex and closed
subset HY T (80) = 4 in the space HPT(8l) which we call a set of admissible controls.

Definition 8. The vector-function @ € H, SH(L{) is called an optimal control over solutions
of problem (17), (18), if

J(#.10) = in  J(x,u), 21
(2, 1) ol (z,u) (21)

where pairs (z,u) € X X .4 are satisfied (17), (18).
Let fix 2o € X, g € HP™(2) and consider (19) as a map D : u — z(u).

Lemma 1. Let spaces X, 9 and Y are Hilbert ones, an operator M be a (L, p)-bounded,
p € Ny, function a € CP*1(R;R,) and elements xy € X, g € HPT(Q)) are fix. Than map
D : HPPY () — HY(X) defined by formula (19) is a continuous.

Proof.  Thus operator B € L(HP*(4l); H**(2))) and solution has the form (19) then
Lemma is true due to properties of flows X (¢, s) and continuously of a(t) with t € Ry.

At last, we proof the main result of this part.

Theorem 7. Let an operator M be a (L,p)-bounded, p € Ny and function a €
CPH([0,T);R,). Then for any xo € X and g € HPT(Q) the unique solution i € $yq
of optimal control problem (17), (18), (20), (21) is exist.

Proof.  Thus set .4 is a nonempty, convex, closed and bouded one, then minimizung
sequence u,, € H,q is exists

lim J(zm,un) =  inf  J(z,u).
i T vn) = L, T

Here sequence x,, construct by the element u,, € ,; using the map D from Lemma 1.
Thus the set 4,4 is convex and closed, then by the Mazur theorem (see, for example [33])
this set is sequensed closed. And we have that

J(z,u) = 7%1_1)13)0 J (T, Um) = (x,ugaisriuad J(z,u).

Thus the quality functional (20) is a quadratical, precisely, strict quadratical, then the
optimal control u € 4,4 is unique. 0

4. Mathematical Model of Optimal Measurement

in Nonstationary Case

For posing of the optimal measurement problem in non-stationary case for the model of
the measuring transducer (MT) we introduce a state space X = {x € Ly((0,T);R") : & €
Ly((0,T);R™)}, a space of measurements $h = {u € Ly((0,T); R"™) : uP™ € Ly((0,T); R™)}
and a space of observations ) = N[X] with some fixed T' € R,. We distinguish a convex
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and closed subset 4,4 in the space U which we call a set of admissible measurements. Our
aim is to find the optimal measurement v € {4 which almost everywhere in (0, 7’) satisfies
the Leontiev type system

Li(t) = a(t)Mx(t) + Bu(t), kerL # {0}, (22)

y(t) = Nz(t). (23)

Also this function satisfies Showalter—Sidorov initial condition
[Ré(M)]pH(a:(O) —129) =0, ac pL(M), (24)

and such that

J(v) = min J(u 95
(v) (u,2(10) ) EXl g X X (u) (25)

with penalty functional in the form

TRA koL
=y / |y D (t) — \|2dt+z / (Ngu' (t), w9 (1)), dt, (26)
=07 =07

where 0 < k < p + 1, matrices N, (¢ = 0,1,...,p+ 1) of order n are positively defined.
Here x = (21,2, ...,x,) and & = (&1, T9, ..., I,) are the vector-functions of a state and a
rate of state change for the MT respectively; u = (uy, ug, ..., u,) and y = (y1,v2, ..., Yn)
are the vector-functions of measurements and observations for the MT correspondingly;
Yo = (Yo1, Y02, - - -,Yon) are the observations obtained in the field experiment results; n
is a number of variables of the system states. Square matrices L and M of order n are
representing the mutual velocity of state changes and the actual state of the MT (det L #
{0}). The scalar function a : (0,7) — R, describes the time variation of the parameters
of the MT. B and N are square matrices of order n, characterizing the interference of
the measurement parameters and the relationship between system state and observation
correspondingly. For getting the mathematical model of MT the system (22), (23) are
supplemented by the Showalter—Sidorov condition (24). Problem (22)—(26) is called the
optimal measurement problem. A solution v € 4,4 of problem (22)—(26) is a reconstructed
signal which is consistent with the results of observations .

Definition 9. A pair (z,v) € X X Uyq is named the exact solution of problem (22)—(26)
if v = x(t) satisfies the system (22), (23) almost everywhere in [0,T] (where u=v) , the
conditions (24) (for some vector xo € R"™) and (25) with (26).

The matrix M is named the (L, p)-reqular (p € {0} UN) if the set pL(M) # @ and oo
is a removable singularity (p = 0) or a pole of order p € N for function det(uL — M)~}

Due to the fact that problem (22)-(24) is a finite-dimensional version of problem (17),
(18), by the Theorem 7 there is exists the solution of the optimal measurement problem.

Theorem 8. Let the matriz M be a (L,p)-reqular (p € {0} UN) and det M # 0. Then
for any vector xg € X u yo € Y and function a € CPTL([0,T);Ry) there exists a unique
optimal measurement v € LU,q for the problem (22)—(26).
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MATEMATNYECKUVE OCHOBHI
TEOPUU OIITUMAJIbHLIX U3MEPEHUN
B HECTAIIMOHAPHOM CJIVHAE

M. A. Caeadeesa

B nociieaee Bpemsi mpuMeHeHNE MATEeMATHIECKAX PE3YJIbTATOB IIPU PEIeHNN TeXHU-
JeCKUX 3aJad CTAHOBUTCsSI Bce Oojiee OOMMPHOI 00sacThio m3ydenwns. [IpumepoM Takoro
[IOJTXO/IA SIBJISIETCSI pa3BUBAeMasi B MOCJIEJHEEe BPEMsI T€OpHUsl ONTHMAJbHBIX u3MepeHuii. B
cTaThe MPOBEIEHO MATEMATHIECKOe ODOCHOBAHUE PEITeHUs 33/1a9i U3MEPEHUH JIMHAMUIYIe-
CKU MCKaXKEHHOI'O CUTHAJIA C YYEeTOM MYJIBTHILIMKATABHOIO BO3/ENHCTBUSI HA U3MEPUTEJIb-
Hoe ycrpoiicto (V). BHecenue Takoro u3MeHeHMs [O3BOJISAET MOBBICUTH aJEKBATHOCTDH
MaTeMaTuaeckKoil mozeau Y, a mmeHHO, 3a7a9a pacCMATPUBAECTCS MPU JOIMYIIEHUH, ITO
mapamMerpsl 1Y MOTyT MEHSIThCS BO BPEMEHH, UTO IMO3BOJIAET ONMCATH CHUYKEHHE TyBCTBU-
TeJILHOCTH dJ1eMeHTOB ITY.

Keywords: necmayuonaprsie ypasrenus coboie8ckozo muna; OMHOCUMENHO 02PAHU-
YEHHBLL ONEPamop; BuPONHCOEHHVIT NOMOK ONEPAMOPOs; 3406446 ONMUMANDHOZ0 YNPABAE-
Hnua; 3adava Illoyoamepa—Cudoposa.
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