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Searching of the optimal production program methods are observed. The aggregated

mathematical model and the model with the alternative technological rotes and the

bottleneck problem are proposed. In addition, the procedure of deriving of new production

established standards based on accumulation statistics is proposed. Ways of flexible

automation of production problem search processes for enterprises are denoted.
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1. Criteria of Production Program Optimality

The criterion of an optimality is maximizing of marginal profit. But it is necessary
to take into account the main limiting factors: demand and production capacity. The
marginal profit is determined by a price and a prime cost of product. The price is
determined by an official price list of company or by conditions of a contract with customer.
The demand is determined by forecast, by volume of supplies to customer recorded in the
contracts and orders. The assortment of products is made by a product range, product
versions, a product quality and a packing. The combination of the product assortment,
the contract, the sales condition, the demand, and the price are different for every sales
condition. The prime price depends on the product range. The marginal profit is different
for different sales conditions [1], [8]. The main optimality criterion that depends on a
production volume, and a product assortment is a marginal profit. Using a marginal profit
the following indices can be enumerated:

(1) a marginal profit per a product unit;

(2) a marginal profit per unit of a general product labour intensiveness;

(3) a marginal profit per unit of a labour intensiveness of the bottle-neck in the route
of production;

(4) a ratio of a marginal profit per unit of general product labour intensiveness to its
general labour intensiveness [7].

2. Optimal Production Program Forming

It is necessary to create the order of forming of the production program to evaluate
the effectiveness of using of the production facilities and of the product assortment
management. Basically, three main stages of drawing of the production program can be
marked out:

(1) evaluating of a labour intensiveness of the production program and comparing it
with the available one;
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(2) calculating of the marginal profit by the kinds of products;

(3) analyzing of the marginal profit and a labour intensiveness.

Let us dwell upon the enumerated stages of forming of the production program. The
labour intensiveness of the production program is calculated on the basis of a sale plan
for forthcoming period of planning taking into account the available remaining stock of
ready product and the minimum reserve stocks. The production program is converted into
labour intensiveness units then the number of units to be produced has been planned.
The time needed to make the product is calculated on the basis of engineering and design
information.

Next step is comparing the planned demand for labour resources and the maximum
available working time that includes overtime and days off. This allows to evaluate the
ability of a company to fulfill the plan.

The production program is adjusted on the basis of such an index as a marginal
profit. In other words, products with the lowest marginal profit per unit of the labour
intensiveness are removed from the production program.

3. Task of Optimizing of Production Program Considering the

Alternative Production Routes and the "Bottle-Neck"

Let us consider the situation at an enterprise with the machining process type of
production that has a "bottle-neck" that is a section with the lowest output consisting
of equipment of different productivity. The "bottle-neck" consists of alternative working
centers. A working center is a section, a workplace. Thus, it is necessary to take into
account only the "bottle-neck" under modeling the limitation by the production capacity.
Let m be the number of working centers, J = {1, 2, . . . , m} be a set of alternative
working centers. Let n be the number of sales conditions, I = {1, 2, . . . , n} be a set of
sale conditions, pi be the marginal profit and di be the demand on the i-th sale condition.

The mathematical model of optimizing of a production program by the "bottle-neck"
considering alternative working centers can look like the following

m
∑

i=1

n
∑

j=1

pijxij → max
x

, (1)

n
∑

j=1

xij = di, i = 1, 2, ..., n, (2)

m
∑

i=1

λijxij ≤ bj , j = 1, 2, ..., m, (3)

xij ≥ 0, i = 1, 2, ..., n, j = 1, 2, ..., m, (4)

where xij is the quantum of output sold by i-th sale condition and produced at j-th
working center, pij is the marginal profit from the sales of products by i-th sale condition
and produced at j-th working center, di is the demand for products by i-th sale condition,
λij is the coefficient or index of machining labour intensiveness for i-th products at j-th
working center, bj is the availability or the fund of working time for j-th working center
[6].
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This problem belongs to the type of distributive ones of linear programming.
"Distribution problems" is a well-known class of fundamental combinatorial optimization
problems, which are much more difficulty to solve than assignment problems [2]. Under
certain conditions it can be transformed into a transportation problem. To this end, it is
necessary to use a presentation λij = αiβj , where αi is the relative labour intensiveness of
the machining of i-th product, βj is the given productivity of j-th working center [5].

The transformations given below determine the method of reducing of distributive
problem (1)-(4) to matrix transportation problem.

(∀j = 1, 2, ..., m)
(

m
∑

i=1

λijxij ≤ bj ⇔

m
∑

i=1

αiβjxij ≤ bj ⇔

m
∑

i=1

αixij ≤
bj

βj

⇔

m
∑

i=1

yij ≤
bj

βj

)

,

where
yij = αixij , i = 1, 2, ..., n, j = 1, 2, . . . , m

is planned labour intensiveness of the works on the i-th product at the j-th working center.
Passing over to variables yij = αixij in (1) and (4), we get

(∀i = 1, 2, ..., n)

(

n
∑

j=1

xij = di ⇔

n
∑

j=1

yij = diαi

)

,

(

m
∑

i=1

n
∑

j=1

pijxij → max
x

)

⇔

(

m
∑

i=1

n
∑

j=1

pijαiyij → max
y

)

.

Thus, distributive sum (1) - (4) is equivalent to the sum:

m
∑

i=1

n
∑

j=1

pijαiyij → max
y

, (5)

(∀i = 1, 2, . . . , n)

(

n
∑

j=1

yij = diαi

)

, (6)

(∀j = 1, 2, ..., m)

(

m
∑

i=1

yij ≤
bj

βj

)

, (7)

(∀i = 1, 2, ..., n, ∀j = 1, 2, ..., m) (yij ≥ 0) . (8)

Problem (5) – (8) is known as the open matrix transportation problem. Using simple
transformations problem (5) – (8) can be reduced to a closed transportation problem.

The presented transportation problem can be solved using method of potentials,
algorithm of disorder, direct or dual simplex-method. The development of modern
mathematical supply of solving optimal flow problem, transportation problem began in
1970-th. The comparison of algorithms to these tasks solve, the experience of operation and
the calculating experiments have shown that the direct simplex-method by far surpasses
the other methods known [4].
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Thus, the problem of optimizing of production program considering the "bottle-neck"
and alternative working centers belongs to distributive problems of linear programming.
To solve this problems, the method of reduction of distributive problem to a closed matrix
transportation problem has been suggested. A modified simplex-method, a program tool
to realize it, as well as integration modules with known corporate information systems
have been suggested to solve the transportation problem. The using of the effective flow
algorithms allows effectively solve the problem of building up the optimal production
programs for the cases when

λij = αiβj , i = 1, 2, ..., n, j = 1, 2, ..., m.

The authors have suggested the method of determining the volume-calendar norms

αi, i = 1, 2, ..., n, βj, j = 1, 2, ..., m

for new products on the basis of accumulated statistics λij , i = 1, 2, ..., n, j = 1, 2, ..., m
on the products that are already being produced in [5], [6].

4. Target Setting for Calendar Plan Standards

The main elements of reference system for planned-economic calculations are
the calendar-plan standards. They are used for planned calculation, yield of capital
investments, production program. In practice, the rate of output and the labour
intensiveness are found out using of a photo of working day, statistics of product machining
by workplaces or by experts [5].

To reduce distributive problem (1) – (4) to transportation problem (5) – (8) it is
necessary to factorize the coefficient or the index of machining labour intensiveness λij

by the product of indices αi and βj having given complexity of i-th product and given
productivity of j-th working center correspondingly [6].

The determining of indices of the product relative labour intensiveness and the
productivity of workplaces can be used:

(1) For the analytical calculation of the potential labour intensiveness and the rate of
output at workplaces of a section where the product has not been machined yet, but
is supposed to be machined.

(2) For the calculation of the planned prime cost without considering different piece-rates
for production on the alternative technological routes.

(3) For the evaluation of the potential yield of capital investments from equipment,
workplaces of alternative section for a comparative analysis of the use of different
type of equipment, alternative technological routes.

Let us consider a method of finding of indices αi and βj values by measured indices
λij . Note that

(

λij =
αi

βj

)

⇔ (ln λij = ln αi − ln βj) ⇔

(aij = xi − yj, aij = ln λij, xi = ln αi, yj = ln βj) ,
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therefore in further we consider the problem in terms xi, yj using the technique of least
modules

∑

i∈I,j∈J

|xi − yj − aij | → min
x,y

.

This problem is equivalent to linear programming problem

∑

i,j

wij → min
x,y,w

, (9)

−wij ≤ xi − yj − aij ≤ wij, wij ≥ 0, i ∈ I, j ∈ J, (10)

which in the standard form looks like
∑

i,j

wij → min
x,y,w

, (11)

(∀i ∈ I, j ∈ J)





xi − yj + wij ≥ aij
−xi + yj + wij ≥ −aij
wij ≥ 0



 . (12)

The dual problem to problem (11)–(12) is

∑

i∈I,j∈J

aij(fij − fji) → max
f

, (13)

(∀i ∈ I)

(

∑

j∈J

fij −
∑

j∈J

fji = 0

)

, (14)

(∀j ∈ J)

(

∑

i∈I

fji −
∑

i∈I

fij = 0

)

, (15)

(∀i ∈ I, ∀j ∈ J) (fij + fji ≤ 1) , (16)

(∀i ∈ I, ∀j ∈ J) (fij , fji ≥ 0) . (17)

In the resulting sum let us make a transformation of variables

gij = fij − fji + 1, hij = fij + fji, i ∈ I, j ∈ J.

After the transformation of variables we have matrix transportation problem

− |I| · |J |+
∑

i∈I,j∈J

aijgij → max
g

, (18)

(∀i ∈ I)

(

∑

j∈J

gij = |J |

)

, (19)

(∀j ∈ J)

(

−
∑

i∈I

gij = − |I|

)

, (20)

(∀i ∈ I, ∀j ∈ J) (0 ≤ gij ≤ 2) , (21)
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that can be solved using the method of potentials. This method along with solving of
(19)-(22), finds solution to the corresponding dual problem

|J | ·
∑

i∈I

ri − |I| ·
∑

j∈J

sj + 2 ·
∑

i∈I,j∈J

tij → min
r,s,t

, (22)

(∀i ∈ I, ∀j ∈ J) (ri − sj + tij ≤ aij) , (23)

(∀i ∈ I, ∀j ∈ J) (0 ≤ tij) . (24)

Comparing system of limitations (11) – (12) with system of limitations (22) – (24), it
is easy to see that from the permissibility of solution (r, s, t) to problem (22) – (24) results
the permissibility of solution

(x = r, y = s, w = t)

of problem (11) – (12). Moreover, if (r, s, t) is an optimal solution to problem 22) – (24),
then

(x = r, y = s, w = t)

is an optimal solution to problem (11) – (12), because the dual to them problems (13) –
(17) and (18) – (21) have the corresponding optimal solutions.

The foregoing makes it possible to suggest the following algorithm of calculating of
the given product complexity and the given equipment productivity

A l g o r i t h m A

• I n p u t :

– Product list I;

– Equipment list J ;

– Λ = {λij : i ∈ I, j ∈ J}

• Ou tput :

– {αi : i ∈ I}

– {βj : j ∈ J}

• S t e p 1. Calculate matrix

A = {aij = lnλij : i ∈ I, j ∈ J}

by matrix
Λ = {λij : i ∈ I, j ∈ J} .

• S t e p 2. Find the optimal solutions to the pair of mutually dual problems (18) -
(21) and (22) - (24) for given I, J, A. Let it be g and (r,s,t) correspondingly.

• S t e p 3. For each i ∈ I calculate αi = exp(ri).

• S t e p 4. For each j ∈ J calculate βj = exp(zj).

• S t e p 5. Return {αi : i ∈ I}, {βj : j ∈ J}.

• End of Algorithm A
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5. Conclusion

In order to calculate an optimal production program at an enterprise with a discrete
mechanical assembly production, the following data are necessary:

(1) the list of product range;

(2) the average or the minimal selling price on all contracts for the period of planning;

(3) the planned calculation of every product prime cost;

(4) the sale plan on the basis of confirmed and forecasted customer orders or a forecast of
sales on the basis of market analysis adjusted according to the warehouse remainder
and the insurance stock;

(5) the data on the number of working shifts for the period of planning on every work
place of the concrete section;

(6) the list of the unambiguously used technological routes of the production for every
product for the period of planning;

(7) the rates of output on every work place on per working shift from the used
technological routes of the production.

The second and the third clauses are necessary to determine the criterion function. The
result of this calculation will become an array of indices pij of the marginal profit in the
criterion function. The fourth clause determines the demand limitation. The planned value
of sales in the context of the product range is index di. The limitations on the production
capacities are determined by the data in clauses 5 to 7. The number of working shifts on
all work places determines index bj . Index λij is the coefficient of labour intensiveness of
the concrete section.

Having these data and using algorithm A1 suggested in this article, one can find the
volume-calendar standards one after another. The determining of the indices of relative
labour intensiveness of the product and the productivity of a work place and sections can
be used: for the analytical calculation of the potential labour intensiveness and rate of
output at a work place of a section at which the products have not been machined, but
is only supposed to be machined; for the calculation of the planned prime cost without
considering different piece-rates for the production on alternative work places; for the
evaluation of the potential yield of capital investments from equipment, work places, the
alternative section for a comparative analysis of the use of equipment of different types,
alternative technological routes.

The modern corporate information systems do not contain algorithms for doing linear
programming sums. Program tools for doing sums of this type are developed separately
from the process of the development of known corporate information systems. Actually,
the described tools are presented by software modules, components and even separate
commercial programs. Authors have developed the class TRANSPORT [4] for doing sums
of the transportation type in different definitions which can be compiled into a class
library for common operating systems. Also, an integration module has been developed
using technologies for WINDOWS such as: COM, Web-services and XML [7].
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