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This paper presents studies of sulfur print images of continuous cast billet transverse
templates. The authors determined a problem of low reliability of information about the
quality of billets. When assessing an image visually, such assessment is subjective with
a human factor to a large extent. The authors developed a control point layout chart to
collect graphical information in the course of casting billets. It is proposed to introduce
three classes of images broken up by a template brightness/foreground ratio. Regarding
an increased complexity of algorithms, the authors proposed the cascade classification of
images. The technique includes assessment of images by shape-generating parameters of
a histogram, by a distance to reference normed histograms, and by applying fuzzy logic
methods. Experimental performance of the cascade technique showed that a simplified
technique by assessing shape-generating parameters had expressly identified 22% of all
images, by assessing a distance to reference normed histograms — 70% of the rest, and only
by applying fuzzy logic methods all the rest images had been unambiguously identified.
A 100% success of the classification is achieved only when applying all cascades of the
developed technique.

Keywords: sulfur print images; image histogram; shape-generating parameters; distance
between objects; object identification rules; cascade classification.

Introduction

This paper focuses on an increase in reliability of a classification of steel billet sulfur
print images. A sulfur print is an image produced during the industrial process and used
to make a visual evaluation of the steel quality. Such visual examination entails an expert
evaluation highly influenced by a human factor and decreased reliability of information
about the quality. Received data are transferred to a steelmaking control system. In the
earlier studies [1], the authors proposed an automatic system for intelligent support of
continuous cast billet production control processes by processing graphical data of sulfur
prints |2, 3|.

Management of facilities and processes in modern conditions is characterized by rapid
changes in external environment, including economic, social, scientific, and industrial
areas. Innovative technologies in the industry require increased response and quality of
decisions made on possible options of system creation and modification in the context
of definite and ambiguous information. Available data processing methods use numerical,
text, and graphical data in decision-making systems. Making decisions based on graphical
data is the most complicated task. It is complicated due to preliminary processing stages
which precede image segmentation and recognition [1].

Automatic segmentation of an original image showed that standard classification
algorithms were sensitive to the image quality. Errors in segmentation may be eliminated
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by preliminary processing of images depending on their properties. The authors propose to
carry out image preliminary processing following an individual route which is determined
subject to a class of such image.

There is current active research on classification of images and objects included in a
structure of such images. Well-known solutions include results of work carried out in many
countries of the world, including Russia.

One of approaches to the classification is to create a library of images by categories. For
example, the paper [4] studied seven categories of images to build a vector classification
system. The paper contains a theory of choice with linearly separable objects in an
optimal hyperplane. The authors performed over 2670 tests with classes: airplanes, birds,
boats, buildings, fish, people, vehicles. The authors applied in their studies the Gaussian
distribution, the vector Laplace operator, and distribution x? as a kernel. When building a
classifier, the authors achieved a classification accuracy of 11-16%. The authors [5] propose
to apply Support Vector Machines (SVM) for multiclass image classification. The paper
contains a method of choice of hyperplanes. However, the authors state problems with
applying methods, if a number of hyperplanes increase. The method was tested in a sphere
of image recognition on an agricultural map of the East of England to determine fields
with single-type crops. Examples of given images determine objects of a regular form.

Quite many papers focus on recognition of a human face and its elements. It is proposed
to use automatic classification based on saliency maps. For example, the paper [6] proposes
to use a 2D wavelet representation based on a plane wave restricted by an envelope to
specify key points on the face. This method showed a peak generalization rate of 82%.
Drawbacks of such method are sensitivity to the image quality and changes in a facial
expression of key elements.

One of classification methods is determination of distinguished points of a pre-set
texture |7, 8]. The paper [4] proposes an approximate basic model of image segmentation
based on a point brightness evaluation. The authors of the paper applied an algorithm for
brain images. As a result, accuracy of classification of images with various textures was up
to 84,4%. The paper [8] deals with a statistical approach to classification of textures from
separate images, which is based on determination of the quality of lighting, positions of
cameras and image processing conditions. The method is based on the use of filters resistant
to image rotation, evaluations of image histograms and forms of histograms. Decisions on
an image class are made by applying the k-Means procedure which is sensitive to a choice
of original cluster centers. The number of correctly classified textures for samples was 98%.

The task of image classification was also fulfilled by applying fuzzy sets and fuzzy
logic. First papers on fuzzy sets applied to classification of images were published in
the late 1980s and early 1990s and showed good results of recognition of cartographic
representations with objects of a regular form [9, 10, 11].

Outlined fundamentals were developed in modern studies [12, 13, 14, 15, 16, 17].
However, in spite of many available studies, problems of classification of images with
many objects of a non-regular form, low contrast ratio, low quality and contract ratio
remain unsettled.

The above problems determined an objective of the research: increase in efficiency of
operation of multi-stage metallurgical facilities based on human actions taken as a result
of processing and analysis of graphical information about the quality of continuous cast
billets. To achieve the objective, the research tasks have been completed:
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1. An information-theoretic analysis of a multi-stage metallurgical process as a
complex system and determination of a role of graphical information in the steel
products quality assessment system.

2. Development of an adaptive technique of cascade classification of graphical
information about the quality of continuous cast billets, including evaluation of
shape-generating parameters of brightness histograms, a degree of similarity with
reference histograms and position of the fuzzy set theory.

3. Design and development of a decision-making system regarding identification
of objects of a non-regular form in images of continuous cast billet sulfur prints,
including algorithms and software to process and visualize graphical information.

4. Computational experiment to evaluate sensitivity and reliability of the
classification technique and the decision-making system in industrial environment.

As part of this paper, the authors state how the second task is completed.

A subject of the research is sulfur print images produced at a quality control stage of
continuous cast billets when they are transferred from continuous casting to metal forming.
A scope of the research is software of the decision-making system regarding the quality of
billets based on segmentation of sulfur print images.

1. Methods

1.1. Acquisition of Sulfur Print Images

Regarding a typical steelmaking technology applied at iron and steel plants, we may
specify three key points of graphical data collection and control in production divisions
(see Fig. 1).

The point "Raw materials control” is set at the exit from the preparation division or
at the entry to a group of steelmaking shops. For example, at burden material preparation
sections. Functions of the point "Raw materials control"include evaluation of a grain-size
composition of materials charged into steelmaking facilities: a fraction and type of scrap,
a grain-size composition of bulk materials, etc. The results are used to predict an apparent
density of materials, chemical composition of original burden and produced steel. Examples
of images of burden materials are given in Fig. 2.

The point "Semi-finished products control” is set at the exit of billets from continuous
casting machines. This point includes two stages: taking templates of billets directly on
the industrial line; evaluations of development of internal and surface defects of the billet
on the industrial section and in a special laboratory. Gained information is transferred to
a technology control analytical laboratory to analyze operating modes of the caster. An
example of the image of template sulfur print is given in Fig. 2c.

The point "Finished products control” is set in rolling shops after main stages of
treatment. Control should be carried out in real time as sheets pass control sections or
upon completion of production. Finished products quality control at the end of a complete
production line requires extra costs for recoiling of every coil, personnel training, and
delays output of a finished lot of products for a period of such examination. The fact of a
subjective evaluation of the quality remains unchanged. Fig. 2d shows a segment of a cold
rolled sheet containing a surface defect.
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Fig. 1. Quality control points in an enlarged flow chart of the iron and steel works: BOF — basic
oxygen furnace, EAF — electric arc furnace

Thus, graphical data are an integral part of characteristics of metallurgical products.
When analyzing technologies, conditions of metallurgical equipment, and products quality,
such data contribute to reliability, accuracy, and completeness of information support of
the corporate management system.

One of techniques to control a continuous cast billet macrostructure is a visual
evaluation of transverse templates and their sulfur prints. Templates are taken on a
continuous steel casting section in an industrial steelmaking shop. Templates are delivered
to the laboratory within 30 minutes after being taken to prepare sulfur prints. Sulfur prints
are made by the Baumann method under GOST 10243-75. The manufacturing technique
includes the following steps:

1. Preliminary treatment of a sample, grinding, polishing, cleaning from dust and grease
spots.

2. Preparation of photographic paper, including wetting of sheets of photographic paper
in a solution of 5% sulfuric acid for 5-8 minutes in the light and further drying to
remove extra solution with filter paper.

3. Making prints by applying photographic paper on a template surface with an
emulsion side, excluding its shifting, and flattening of photographic paper with a
rubber roller to fully eliminate gas bubbles.

4. Thorough rinsing of finished prints in running water, processing with a fixer, rinsing,
drying, and marking.
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Fig. 2. Examples of images of burden materials and steel products: a — a segment of the picture
of scrap; b — a segment of the picture of limestone CaCOs3; ¢ — internal defects of a continuous
cast billet; d — a surface defect of cold rolled sheet

Prints are made at approx. 20°C during 3-15 minutes depending on steel alloying
and sulfur content. Prints are considered to be ready, if photographic paper darkens from
light brown to dark brown. Finished sulfur prints represent images with a size of about
175 x 230 mm. By scanning sulfur prints, we make their electronic images. The size of the
sulfur print does not exceed A4 format, therefore, we may use an A4, 300 dpi scanner.
Scanned images have a resolution of about 2100 x 2800 dots at the specified parameters.
Examples of images corresponding to template sulfur prints scanned with a resolution of
300 dpi are given in Fig. 3.

When conducting a first set of an industrial experimental survey, we collected and
studied 32 sulfur print images and retrospective information gained from heat logs. Having
visually examined the group of images, we put forward a hypothesis that such group may
be divided into three classes:

— class A: images containing a minor contrast between foreground brightness and the
object under study;

— class B: images containing a medium contrast between foreground brightness and
the object under studys;
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Fig. 3. Sulfur prints of transverse templates of continuous cast square billets

— class C: images containing a sharp contrast between foreground brightness and the
object under study.

A visual analysis of the sulfur prints revealed features of images:

1. A sulfur print image always contains the object under study (the particular image
of a transverse section of billets with a size of 100 x 100 mm or 150 x 170 mm) and
surrounding background (see Fig. 4a).

2. A position of the transverse section of the object under study is indefinite and its
coordinates cannot be simulated by known methods (see Fig. 4b).

3. Images are divided into three classes in view of brightness of the object under study
and image background (see Fig. 4c).

4. A position of the transverse section of the object under study is indefinite and its
coordinates cannot be simulated by known methods (see Fig. 4b).

5. Images are divided into three classes in view of brightness of the object under study
and image background (see Fig. 4c).

Typical images of every class in increasing order of such ratio are given in Fig. 4.

In Fig. 4 number 1 specifies the background, number 2 — the object under study. As
the image of the template is located in a part of the image only and its position is not
definite, it was resolved to develop an algorithm of searching for an image area in an area
of the sulfur print containing the object under study.

Original raster images of sulfur prints are full-color and represented in the RGB
color model. In this model every color is represented with red, green and blue primary
colors (components). A color of every dot of the image (pixel) is a result of mixing three
components. The total number of bits used to represent every pixel in an RGB color space
is called the color depth. The color depth of original images is 24 bits, i.e. every component
(red, green, blue) has 8 bits. A total number of all possible colors of a 24-bit RGB image
is (2%)3 = 16777216.
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Fig. 4. Structure of images under study in terms "Object under study — background": a — a
typical image of class A; b — a typical image of class B; ¢ — a typical image of class C

Original images are processed into gray-scale ones with a color depth of 8 bits per pixel.
In the context of the paper gray-scale images mean images in shades of gray. Every pixel
of the image contains information about depth (brightness). A total number of possible
gray gradations for an 8-bit gray-scale image is 28 = 256. Minimum brightness (0) refers
to black, maximum (255) — white.

Fig. 5 shows results of processing original images into gray-scale ones.

a b C -

Fig. 5. Gray-scale images of sulfur prints of transverse templates of continuous cast square billets:
a — a typical image of class A; b — a typical image of class B; ¢ — a typical image of class C

A main strategy of converting full-color images into gray-scale ones is to apply
photometry principles to compare brightness of the image in shades of gray and the original
color image [18]. Brightness of a resulting pixel is calculated as a weighted sum of depth
values of three RGB model components. Weights of color components are selected under
ITU-R BT.709, which factors into features of human perception, higher sensitivity to green
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and less to blue:
Y =0.2126R + 0.7152G + 0.0722B,

where Y — brightness of a resulting pixel; R, G, B — color components of a pixel of the
original image [19].

A block diagram of an algorithm for converting full-color images into gray-scale ones is
given in Fig. 6. In Fig. 6 block 1 is used to initialize data, and then a 2D array of relevant
values of pixel colors is uploaded into memory and its height and width are calculated.
Block 2 organizes a cycle structure for every row of the array of pixels, block 3 — for every
pixel. Any algorithm for converting full-color images into gray-scale ones is based on three
actions:

— acquisition of values of red, green, and blue components of the pixel — block 4;

— calculation of brightness of a resulting pixel as a weighted sum of pixel components
— block 5;

— assignment of calculated brightness to a pixel of the resulting image — block 6.

The algorithm results in a gray-scale image, whose size is the same as an original one,
with a color depth of 8 bits per pixel.

1.2. A Technique to Classify Sulfur Print Images on the Basis of Shape-
Generating Parameters of a Brightness Histogram

All sets of images made in the first series of the experimental survey are divided into three
groups shown in Fig. 3. A key characteristic of the image is the brightness histogram.
The digital image brightness histogram is referred to as a discrete function:

h(?”k) = Ny,

where 7 — the k-th degree of brightness; n, — number of image pixels with the brightness
& [20]. For an 8-bit image k changes within limits [0; 255]. To determine which one of three
supposed classes is attributed to the histogram, we introduce a term of shape-generating
parameters of the histogram.

The shape-generating parameters of the histogram include the following:

— position of a brightness threshold — T7;
— position of brightness maximum to the left of the threshold — m;

— position of brightness maximum to the right of the threshold — M;

value of the brightness function in each of specified points F(m), F(T) and F(M)
(see Fig. 7).

To determine a brightness threshold value, we used algorithms given in [20, 21, 22,
23, 24]. According to these sources, a threshold value is a brightness value with respect to
which the histogram is divided into two parts.

By dividing the histogram into two parts, we find brightness maximum of each part.
The brightness threshold value is found by the Otsu method [23]. This method divides
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Fig. 6. A block diagram for converting full-color images into gray-scale ones

image pixels into two classes calculating a threshold so that an intraclass variance is
minimum. Such variance is calculated as a weighted sum of variance of two classes:

05, (t) = wi(t)o(t) + wa(t)o3(t),

where weights w; — probabilities of two classes divided by the threshold ¢; o2 — variance of
these classes.
The probability for each level of brightness is calculated as:

where n(t) — number of image pixels with the brightness ¢; N — a total number of image
pixels.

The author of the method [23] proved that minimization of the intraclass variance is
equal to maximization of the interclass variance:

0y = 0° = ai(t) = wi()wn(t) [ (t) — p2(1)],

where p; — arithmetic mean of the class.
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Having applied the Otsu method and found the brightness threshold value, we may find
positions of discrete function maximum for each part of the histogram. A block diagram
for classifying images of a low contrast ratio on the basis of the brightness histogram is
given in Fig. 8. The search is conducted by a simple enumeration of discrete function
values of the histogram in each part.

The block diagram given in Fig. 8 includes blocks:

— block 1 reads full-color images of continuous cast billet sulfur prints from a medium
and loads into memory as a numeric array, every element of such array corresponds
to a pixel color value;

— block 2 builds the brightness histogram for all three channels (red, green, blue) in
the RGB color space;

— converts full-color images into gray-scale ones applying the algorithm BT709;
— block 4 builds the histogram of the image generated at a previous stage;

— blocks 5 and 6 search values which characterize shape-generating parameters of a
histogram:;

— block 7 creates a database containing data on results: an original image, a gray-scale
image, discrete functions to build histograms for red, green, and blue channels, as
well as the gray-scale image, brightness threshold and the value of the histogram in
this point, maximum positions in both parts of the histogram and their values. A
detailed diagram of functioning of blocks 5 and 6 is given in Fig. 9.

On the basis of shape-generating properties of the brightness histogram for images
made in the first series of the experiment we got the results given in Table 1. Table 1
introduces notations: 71,,T,, Ty, T,s — discrete function values for the brightness threshold
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Fig. 8. A block diagram for classifying images on the basis of the brightness histogram

of every channel and gray-scale image; m,., mg, mp, My
brightness threshold of the discrete function of the histogram for every channel and gray-
scale image; M,, Mg, My, My, — maximum to the right of the brightness threshold of the
discrete function of the histogram for every channel and gray-scale image; r, g, b —

to denote color channels: red, green, blue correspondingly; gs — index of correspondence

with the gray-scale image.

Table 1

Evaluation of the brightness threshold and maximum values
of the discrete function for test images
Red channel Green channel | Blue channel Gray scale
tmages | T [ ag, [, | 1, [ M, [ oy | T | My | mge | Ty | M,
Fig. 3a | 241 | 242 | 245 | 237 | 238 | 245 | 227 | 228 | 245 | 237 | 238 | 240
Fig. 3b | 189 | 214 | 255 | 178 | 205 | 255 | 151 | 190 | 255 | 179 | 206 | 254
Fig. 3c | 169 | 204 | 249 | 151 | 198 | 249 | 151 | 181 | 235 | 152 | 197 | 248

In view of the values stated in Table 1, we divided images into groups and drew up
classification Table 2
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Table 2

Classification of gray-scale images of sulfur prints
of continuous cast billet transverse templates

Number of Indicators

Group images Left Brightness Right
maximum threshold maximum
min | max | min | max | min | max
A 4 234 | 239 | 237 | 240 | 240 | 244
B 21 179 | 218 | 206 | 231 233 | 254
C 7 147 | 185 193 | 207 | 238 | 248

(s )
[ — e [T
Calculate probability for Loop on t from 0 to 255

every level of brightness

1

t < threshold
no yes

Loop on t from 0 to 255
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h J
no _
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—
Loop on't
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Fig. 9. A block diagram for searching for the brightness threshold value and maximum of the
discrete function of the image histogram

Results given in Table 2 allow for using a technique for classification of images by
shape-generating parameters of the brightness histogram with the adaptive membership
function:

3
R:ZZ [(mlmln Sm S mimax)/\(ﬂmin S Téﬂmax)/\<Mzmm S MS Mimax)];
=0
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where R — a set of possible decisions consisting of four elements {0, 1, 2, 3}, whose value
refers to image groups: 1 —group A; 2 — group B; 3 — group C; 0 — group consisting of images
not included in any groups of classification; m; min, M maz, Limin, Li mazs Mimin, M; maz
— empirical limits of the threshold, left maximum and right maximum determined on
the basis of an empirical study and adapted during training the decision-making system
for classification of images; m, T, M — quantitative characteristics of the histogram
of the image selected for classification: left maximum, threshold, and right maximum,
correspondingly.

A block diagram for classifying images on the basis of the adaptive membership
function is given in Fig. 10.

| .
1 Adding a new image to
4

New image | operation of the system
) -
Making a decision on class
) . === membership
Making a decision on,
extension of the base | - . .
4 . | . Yes Add the image to i Recording a new image
of reference images -t---- ake adaptation? N F-- .
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to specify the : =) it
membership function | Sulfur print | Extracting stored
. | .
images i images
* | AP
Building reference
histograms
v

Determining shape-
generating parameters
v
Building the adaptive
membership function
T

R
! Making a decision on a
I further use of the system

Add a new image?

Fig. 10. A block diagram to make a decision on classification of images by shape-generating
parameters of the sulfur print image brightness histogram on the basis of the adaptive membership
function

On the basis of shape-generating parameters the number of images which were
classified in an area of ambiguous identification amounted to: 31% — between classes

A and B; 18% — between classes A and C; 78% — between classes B and C. Therefore, it
was resolved to specify the developed classification technique.

1.3. A Technique to Classify Sulfur Print Images on the Basis of a Distance
to a Reference Histogram

By dividing all sets of histograms into uniform classes, we may choose a path of image
processing depending on its features.
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To specify membership of images included in the area of ambiguous identification, one
of classes was reviewed in terms of the distance between levels of the reference histogram
of the class and levels of histograms of every of original images for every class. The number
of compared parameters increases from 3 originally selected ones to 256. At the first stage
the task was to determine a criterion of unambiguous classification of images as part of
the proposed technique. Three types of distances were considered: the Euclidean distance,
the Chebyshev distance, and the Manhattan distance:

— the Euclidean distance:

1 m
dyy = | — (Z Z1)5 k=1, ..., m
kl mz:: kj — l] y Ty ) y 1

— the Chebyshev distance:
di = max|Zy; — Zi;

— the Manhattan distance:

where m — number of indicators X; Zy;, Z;; — standardized values of the indicator j for
the k-th and [-th objects correspondingly; n — number of images.

Diagrams of scattering of distances from the normed reference histogram of every
image are given in Fig. 11.

An image may be deemed to be classified unambiguously, if a value of every type of
distance between the image histogram and histogram of a specific class is minimum. Fig.
12 presents a block diagram for classifying images. The block diagram of the algorithm
includes:

— block 1 — reading full-color images of sulfur prints of continuous cast billet from a
medium and loading into memory as an array of pixels;

— block 2 — converting full-color images into gray-scale ones applying the algorithm
BT709;

— block 3 — building the histogram of the image generated at a previous stage;

— block 4 — calculating three types of distances between the current image histogram
and reference histograms of classes;

— block 5 — searching for the class with minimum distances of all types.

1.4. A Technique to Eliminate Ambiguous Identification of Images on the Basis
of a Fuzzy Set

As after applying techniques based on shape-generating parameters of histograms and
distances 31% of images are left in the area of ambiguous identification, the technique for
classifying sulfur prints on the basis of a fuzzy set was developed.
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The most complicated stage in applying fuzzy sets to solve applied problems is
determination of linguistic variables and their terms. To solve the task of classification
of images, we introduce a structured linguistic variable — I'mage, which contains six
components: m, M, T, du, dg, dc, where T — position of a brightness threshold;
m - position of brightness left maximum; M — position of brightness right maximum,;
da, dp, dc —the Chebyshev distance to reference histograms A, B and C' correspondingly.
Fig. 13 gives the structure of the linguistic variable — I'mage.

Every component of the linguistic variable Image takes three values: "Member of class
A”, "Member of class B”, "Member of class C”.

Every component of the key linguistic variable is set to a basic numeric variable and
a membership function. Fig. 14 and 15 give the structure of two linguistic components
corresponding to the basic numeric variable and the membership function built on the
basis of expert information. Distribution of values of the basic variable corresponds to
results given in Table 2. Fig. 14 introduces notations: mp — basic numeric variable
corresponding to linguistic one m; MA min, MB min, MC min — lower limit of the basic
variable mp; MA mazs MBmaz, MC maz — Upper limit of the basic variable mp; p, —
membership function for the component m. Upper and lower limits may vary, when the
system is adapted due to input of new sulfur print images in the database.

Fig. 15 introduces notations: Mp — basic numeric variable corresponding to
linguistic one M; Ma min, MB min, Mc min — lower limit of the basic variable Mp;
Ma mazs, MBmaz, Mc mez — upper limit of the basic variable Mp; 7,, — membership
function for the component M.

Every component and key linguistic variable are defuzzified by one of known methods.
For example, by the highest membership degree or by the method of the center of gravity.

2016, vol. 3, no. 4 25



I. A. Posokhov, O. S. Logunova, A. Yu. Mikov

)

Library of! . A Array of
images. Full-color images Image acquisition pixels
J
v @
Converting the [T° _
image into gray- | |- -{Algoﬁthm BT709
scale one T
v /?D
Building the |
histogram of the
gray -scale image
Y [REp———
@ :Calculaﬁng the Chebyshev,
Calculating [ _ _:Eucli dean, and Manhattan
distances idistances to every reference
thistogram of the class
— v —— (%)
T 'Searching for the class with
S | _ i Searching for the class wi
Datshase e :minimum distances of all types
A
C End )
Fig. 12. A block diagram for classifying images
Linguistic variable > Image
)N

v v v ¥ ¥ ¥
Components ———>» m M T da ds dc

“Member of class ‘Memb;r'of class “Membe‘r of class

Terms
._b A!.‘ BH C!}

Fig. 13. A structure of the linguistic variable image
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Fig. 16. A block diagram for classification on the basis of a theory of fuzzy logic

A block diagram for classifying images on the basis of fuzzy sets is given in Fig. 16.
The algorithm includes blocks of defuzzification for every linguistic component and the
key linguistic variable Image by the highest membership degree.

As this technique does not allow for areas of ambiguous identification, all images
under review will be attributed to one of three introduced classes and every class will have
a definite path of further specification of a line of the object under study and its filling
with objects of a non-regular form corresponding to defects in the metal continuity.

1.5. An Adaptive Technique of Cascade Classification of Graphical Data on
the Quality of Continuous Cast Billets

Studying a structure of the original image and techniques for its classification on the
principle of from simple to complex resulted in development of a cascade technique for
classifying sulfur prints. Every next cascade of classification is applied to images located
in an area of ambiguous identification on the basis of an evaluation of a previous step.
Every formed cascade differs from a previous one in a number of identification indicators
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Fig. 17. A block diagram of the adaptive technique of cascade classification of continuous cast
billet transverse template sulfur print images

and complexity of membership functions. Fig. 17 gives a block diagram of the adaptive
technique of cascade classification of sulfur print images. All blocks 1-3 of the cascade
classification technique contain adaptive blocks according to block diagrams given in
Fig. 10, 12 and 16.

Attribution of the image to a selected class allowed for determination of a path to
process information about the quality of continuous cast billets under OST 14-1-236-91.

2. Results of Cascade Classification of Sulfur Print Images of Billet
Transverse Templates

The above techniques are implemented in software Cascade — Sulfur Print
2.1. Results of Image Classification on the Basis of Shape-Generating
Parameters of Histograms

Every class of images had histograms having specific differences in the form:
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1. Histograms of images of class A are unimodal, as the background and the object
under study have comparatively similar brightness. Significant levels of brightness
are located in a narrow (10 15% within a range of [215; 255]) band characterizing a
low contrast of images. The band is shifted to the left evidencing of high brightness
of images.

2. Histograms of images of class B are characterized by two expressed peaks comparable
in terms of an area as the background and the object under study have different
brightness. Significant levels of brightness are located in a band with the width of
40 + 50% within a range of [140; 255] — the image has a normal contrast.

3. Histograms of images of class C also have two peaks, however, the left one is located
in a wider band and has lower maximum. The background and the object under
study significantly differ in brightness.

The width of the band of significant levels of brightness is 70% within a range of
[80; 255], corresponding to a high-contrast image. The obtained histograms of every class
showed that:

1. The histogram of a grayscale image is enough to classify images, as deviation of the
threshold and maximum values of channel histograms compared to the histogram of
grayscale images does not exceed 15%.

2. An original assumption on a division of the set of images into three classes is
confirmed with results of the computational experiment, and there is a need for
development of a technique for identifying a form of sulfur print image histogram.

We built average normed histograms for every class of images. Such histograms were
adopted as reference ones, Figure 18 gives reference histograms for all classes.

The form of the above histograms allows for putting forward a hypothesis on possible
classification of images by the form of the histogram. Having analyzed histograms, we
proposed an adaptive function of mapping of every image to one of three classes:

3
R:ZZ [(mzmm Sm S mimaz)/\(ﬂmin S TéT‘zmaa:)/\(Mzmzn S MS Mimaz)]a
i=0

where R — set of possible decisions consisting of four elements {0, 1, 2, 3}, whose values
correspond to groups of images: 1 — group A; 2 — group B; 3 — group C; 0 — group consisting
of images not included in any groups of classification; M min, Mimaz, Limins 13 mazs
— empirical limits of the threshold, left maximum and right maximum determined on
the basis of an empirical study and adapted during training the decision-making system
for classification of images; m, T, M — quantitative characteristics of the histogram
of the image selected for classification: left maximum, threshold, and right maximum,
correspondingly.

Having analyzed diagrams, we made an assumption that there are areas of ambiguous
identification. Having sorted out empirical parameters in ascending order and analyzed
their location along the axis of brightness of points of images, we confirmed our assumption
for initial empirical material.

An analytical rule of class membership was established for all classes:
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Fig. 18. Average normalized histograms for classes of images: a — for images of class A; b — for
images of class B; ¢ — for images of class C

1. VM (M € [Mpin a5 Moz a]) = (A C B), ie. for any tuple (m, 7, M), where
M € [Myin a; Mpax 4] histograms are identified by two values from the set R (see
Fig. 18a).

2. VM (M € [Mpin c; Mpmaz a]) = (ACC), ie. for any tuple (m, T, M), where
M € [Myin ¢; Mpaz 4] histograms are identified by two values from the set R (see
Fig. 18b).

3. Vm (m € [mmm B; Mmax C])&VT (T € [Tmzn B Tmaz CD&M (M € [Mmzn Cs Mma:v C’]) =
= (B c (), ie. for any tuple (m, T, M), where m € [Muin B; Mmaz 4], T €
[Tin B; Tmaec] and M is a relevant component of histograms from class C,
histograms are identified by two values from the set R (see Fig. 18c).

Having represented the areas of ambiguous identification as logical expressions, we

obtain:

(Mopin a < M < Myaw a) > (AC B) = (Mpina < M < Mpaza)V(ACB); (1)

(Mypine < M < Mpaza) > (ACC)= Mpinc <M < Mpaza)VACC);  (2)

(mminB <m < Mpagz C) A (TmmC <T< Tmaz C’) A (MminC <M < Mma:c C) —
— (B C C) = (mminB <m< mmamC') Vv (Tman <T< TmaxC) Vv
\/(MminC <M< Mma:c C) V (B C C) . (3)

2016, vol. 3, no. 4 31



I. A. Posokhov, O. S. Logunova, A. Yu. Mikov

C
B
A
0 50 100 150 200 250

Brightness
B Left maximum OBrightness treshold 8 Right maximum

Fig. 19. Areas of ambiguous identification of mapping X (R)

Then a total area of ambiguous identification (see Fig. 19) may be written as:

X(R) = (1)\/ (2) \/(3) = (mminB <m< mmwc)/\ (Tmmc <T < Tmawc) N
/\(MmmA <M< Mma:rC) — (MmznA <M < MmaxC) —
- ((ACB)V(ACC)v(BCC()).

Conclusions:

1. When the technique for classifying images on the basis of shape-generating
parameters of histograms is applied, areas of ambiguous identification appear.

2. The size of areas of ambiguous identification is as follows: mp N me =
(179, 185], T N Te = [206, 207], My N Mp = [240, 244], Mo N Mgz =
240, 244], Mp N Mo = [238, 248].

3. The number of images which were in the area of ambiguous identification during
classification was 31% — between classes A and B; 18% — between classes A and C;
78% — between classes B and C.

4. Classification indicators may be specified, if the number of points of comparison with
the reference histogram increases.

Only 22% of original images were unambiguously classified on the basis of shape-
generating histograms.
2.2. Results of Classification of Images on the Basis of Distances

Regarding 78% of ambiguously identified images, we calculated three types of distances
(see p. 1.3) and evaluated membership of every class. The membership rule was as follows:
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an image is attributed to a set class, if all three types of distances have a minimum value.
If we introduce notations S;; — distance with the number 7 to a class with the number j,
the matrix will be as follows:

Class, j
A | B | C
Distance type, ¢ 1 5 5

Chebyshev, 1|51 | Si2 | Sis
Euclidean, 2 521 522 523
Manhattan, 3 531 532 533

In view of the introduced notations, the analytical expression of the class condition is:
Vi =1, 335 = const (S; min = dij) = I € K;, where S; ;,, — minimum distance of i = 1, 3;
I — formal notation of the image; K; — notation of the class with the number j =1, 3.

Figure 20 gives diagrams with calculated distances of every type for unambiguous
classified images. For every series of images, the matrix of distances is as follows:

— for figure 20a

A B C
1 0.0320 | 0.0120 | 0.0230
0.0100 | 0.0022 | 0.0060
3 0.0038 | 0.0012 | 0.0037
— for figure 20b
A B C
1 0.0104 | 0.017 | 0.0095
0.0028 | 0.010 | 0.0085
3 0.0008 | 0.0041 | 0.0048

For Fig. 20a all minimum distances correspond to class B, therefore, images are
classified unambiguously. For Fig. 20b classification for classes A and C is ambiguous.
In this case it is necessary to perform the third cascade step. At the second cascade step
70% of the rest images were identified unambiguously.

At the third cascade step all the rest images were classified unambiguously. Results of
classification are given in Table 3.

3. Conclusions

1. The experimental survey resulted in preparation of a base of sulfur print images and
on the basis of their visual examination main structural parts were determined: "the
object under study” and "background”. Regarding brightness of the determined parts,
it was proposed to divide all images into three classes: A, B and C. By attributing
images to one of specified classes, a path of further image processing is determined.
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Table 3
Classification of images when the technique of cascade classification is applied
. Results of classification
No Image name in shape-generating
’ the project visual distances | fuzzy sets
parameters
1 29.tiff A A B, C C, A A
2 30.tiff A A, B, C C, A A
3 31.tiff A A, B, C C, A A
4 32.tiff A A, B, C C, A A
5 01.tiff B , C B B
6 02.tiff B A B, C C, B B
7 03.tiff B B B B
8 04.tiff B B, C C, B B
9 05.tiff B A, B, C C, B B
10 06.tiff B A, B, C C, B B
11 07.tiff B B B B
12 08.tiff B B, C B B
13 09.tift B B, C B B
14 10.tiff B B, C C, B B
15 11.tiff B B, C B B
16 12.tiff B B, C C, B B
17 13.tiff B B B B
18 14 tiff B B, C B B
19 15.tiff B B, C B B
20 16.tiff B A B, C B B
21 17 tiff B A B, C B B
22 18.tiff B A, B, C B B
23 19.tiff B , C B B
24 20.tiff B A, B, C B B
25 21.tiff B B, C B B
26 22.tiff C B, C C C
27 23.tift C B, C C C
28 24 tiff C B, C C C
29 25.tiff C B, C C C
30 26.tiff C A, B, C C C
31 27 .tiff C A, B, C C C
2. A brightness histogram was chosen as a key characteristic of the sulfur print image.

A normed reference histogram was built for every supposed class; the shape of such
histogram may be characterized by three key shape-generating parameters and 256
levels of brightness.

A technique was developed to classify sulfur print images on the basis of the
membership function by three shape-generating parameters of the histogram. As
a result, 22% of images were attributed to the area of unambiguous classification.
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4. Regarding images attributed to the area of ambiguous identification, a technique

was developed on the basis of calculation of the Chebyshev distance for 256 levels
of the histogram. Upon application of this technique, 70% of the other images were
classified.

. To eliminate areas of ambiguous identification, it was proposed to apply the
technique based on the theory of fuzzy sets for a complex structured linguistic
variable "Image” consisting of six components. Term sets and membership functions
were introduced for every component as recommended by experts. At the third
cascade step all images were classified unambiguously.
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METO/, I AJITOPUTMBI KACKAJTHOI
KJIACCUPUKAIINN N30BPAYXKEHIII CEPHOT'O
OTIIEYATKA IIOITEPEYHOI'O TEMIIJIETA SATOTOBKU

U.A. Ilocoxos, O.C. Jloeynosa, A.F). Muxos

B pabore mpencraBieHsl pe3yabTAThI MCCJIEIOBAHNS M300PAKEHUI CEPHBIX OTIIeYaT-
KOB TIOIIEPEYHOr0 TEMILJIETa HEIPEPBIBHOJUTON 3ar0TOBKU. ABTOpaMu pabOThI OIIPE e/ IeHbI
IpO06JIEMBI HU3KOH JIOCTOBEPHOCTU WHMOPMAIIUH O KavYeCTBe 3ar0TOBOK. BudyaJsibHast OleH-
Ka M300parkeHusl IIPOBOJIUT K CyObEKTUBHOI OIEHKE C OOJIBIIAM BKJIAJIOM YE€JIOBEYECKOIO
daxTopa. ABropamu paszpaborana cxeMa pazMelleHus TOYeK KOHTPOJIs Jijist cOhopa rpadu-
qecKoil nH(MOPMAINN B IPOIECCe TOJIyUIeHUs 3ar0TOBOK. lIpesioskeHo BBECTH TPHU KJiacca
n300paKeHnil 110 IPU3HAKY OTHOIIEHUs sAPKOCTH 0ObeKTa (TeMILIeTa) K OCHOBHOMY (DO-
uy. [lo HApACTAHUIO CJIOXKHOCTH AJITOPUTMOB ABTOPAMU IPEJJIO’KEHA KACKaHAST METO/INKA
KJTaccuduKanm n30opaxkenus. MeTomuKa BKIIOYAET OIIEHKY N300parkeHus 1o hopmMoodpa-
3YIOIIMM XapPAKTEPUCTUKAM T'MCTOMPAMMBI, IO PACCTOSIHUIO 10 ITAJOHHBIX HOPMUPOBAHHBIX
TUCTOTPAMM U Ha OCHOBE METOJIOB HEUETKOH JIOruKu. Pe3ysbraThl OMBITHON SKCILIyaTaIn
KACKA/IHOI METOINKU IOJIyI€HO: YIIPOIIEeHHAS METOIUKA 0 (hOPMOOOPAYIOMNM XapaKTe-
PHCTUKAM OJHO3HAYHO uaeHTHduIuposasa 22% Beex n300pazKeHuil, 1o OIEHKE PACCTOSAHUS
0 3TaJIOHHBIX HOPDMUPOBAaHHBIX I'MCTOI'DAMM — 70% OT OCTaBIIUXCdA M TOJIBKO OI€HKa IIpU
[IPUMEHEHUU METOJ[OB HEYETKOW JIOTMKHU OJIHO3HAYHO MJIEHTH(MUIINPOBAJIA BCE OCTABIIAECS
nzobpakenus. CTo MPOIEHTHBIN yCIex KJIacCu(MUKAIMU JOCTUTAETCsT TOJBKO IIPU IIPUMEHE-
HUU BCEX KACKAJOB pa3paboTaHHON METOIUKH.

Karouesvie cao6a: u300pajicerus CEPRoLr 0OMNEUGMKOS; 2UCMO2PaMMa U300PAHCEHUA;
Bopmoobpasyrouue TAPAKMEPUCTIUKU; PACCMOAHUS MEHCAY 00BEXMAMU; NPAGUAL UOEHMU-

Purayuy 065eKM06; KackaoHas KAGCCUPUKAUUS.
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