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The paper describes a numerical method for solving the optimal control problem for a
semilinear model of Sobolev-type. The method is based on both the modified projection
Galerkin method and the method of multistep coordinate descent with memory. New
numerical methods for solving nonlinear optimal control problems are need, because there
exists a large number of applications and it is difficult to find their analytical solutions. We
consider mathematical model of regulating potential distribution of speed of the filtered
liquid free surface motion. In order to numerically investigate the mathematical model,
we use the sufficient conditions for the existence of an optimal control by solutions of
Showalter — Sidorov problem for semilinear Sobolev type equation with s-monotone and
p-coercive operator. We present the results of computational experiment that demonstrate
the work of the proposed numerical method.

Keywords:  semilinear Sobolev-type equation; optimal control problem; numerical
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Introduction

A study of different technological processes and objects leads to the study of initial
problems for semilinear nonclassical models of mathematical physics. For different values
of model parameters, there are initial-boundary problems for partial differential equations
and systems of partial differential equations, which are not solved by derivative with respect
to time. For the first time, R.E. Showalter [1] proposed to call such equations Sobolev-type
equations [1-6]. Many papers [2,4,6-9] are devoted to questions of analytical and quality
study of initial (multipoint initial-final) problems for linear and semilinear Sobolev-type
models.

A study of the possibility to controll by an external influence, which allows to achieve
the desired result by minimum cost, is of undoubted theoretical and practical interest. A
large class of applied control problems can be investigated in the framework of the optimal

control problem
J(xz, u) — inf, u € Uy, (1)

where pairs (z, u) satisfy Showalter — Sidorov problem for semilinear Sobolev-type equation
Li+ M(z) =u, L(z(0)—x9) =0, ker L # {0}. (2)

Here J(z,u) is a specially constructed objective functional; U, is a closed and convex set
in the space of controls U. The optimal control problems for linear Sobolev-type equations
of the first and high orders with Cauchy or Showalter — Sidorov conditions are studied in
[10-14]. Development of the optimal control theory for linear Sobolev-type equations allows
not only analytically and numerically solve control problems for applied models, but also
to develop the theory of optimal measurements [15,16]. For the first time, A.L. Shestakov
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and G.A. Sviridyuk [15] propose to apply methods of optimal control in order to solve
problems of dynamically distorted signals restoration.

The main difficulties of optimal control problem (1), (2) study are non-linear structure
and degeneracy of the equation. The initial Showalter — Sidorov condition is considered
in the case of Sobolev-type equations. It allows to avoid both the phenomenon of non-
uniqueness of Cauchy problem solution and the need to choose the initial data from not
all space, but only from a subset [17]. New numerical methods for solving nonlinear optimal
control problems are actual, because there exists a large number of applications and it is
difficult to find their analytical solutions. Note the great interest in the study of optimal
control problems. Nevertheless, numerical methods for solution of optimal control problem
remain poorly investigated.

Consider Showalter — Sidorov problem (2) solution with a self-adjoint, nonnegative
defined, fredholm operator L and s-monotone and p-coercive operator M. An existence
of such solution is investigated [11] on the base of the phase space method [18] and the
classical methods of monotonicity and compactness [19]. Approximate solutions of problem
(1), (2) are constructed by Galerkin projection method [20]. Such method successfully
established itself in the analytical and numerical studies of initial boundary problems for
Sobolev-type equations [20-22| and allowed to take into account the phenomenon of the
equation degeneracy, when approximate solutions are constructed. According to Galerkin
method, the coefficients of the approximate solution of problem (1), (2)

™ (s,t) = Zai(t>90z’(5>7 u™(s,t) = Z%(ﬂ%(@

can be found from the system of nonlinear differential-algebraic equations

(La™, i) + (M(2™), 0i) = (u, @), i =1,...,m, (3)
with initial Showalter — Sidorov condition

Then objective functional J depends on unknown functions of state ™ and control u™.
We consider state equations (3) with initial conditions (4) as a restriction on the problem
(1). The result is the problem to minimize functional J(z™,u™) on the set of admissible
pairs of controls and states. The problem is solved by the method of multistep coordinate
descent with memory. Papers [23,24] propose to use such method in order to numerically
solve the control problems for Leontief type equations (i.e., for linear finite Sobolev-type
equations). The article considers the modification of such algorithm in the case of non-
linear systems of differential-algebraic equations. It allows to find approximate solutions
of problem (1), (2). In [25] we propose an algorithm to find the numerical solution of
optimal control problem for semilinear Sobolev-type equations. The algorithm is based on
both Galerkin method and the decomposition method. However, the numerical method
allows to find solution of optimal control problem (1), (2) in the case, when operator M
has a linear component. Numerical method constructed in the article allows to avoid such
restriction and to solve a wider class of problems.

The proposed algorithm of numerical method is illustrated by optimal control problem
(1) for the filter model [26]

(A= A)z; — aA(|z|P %) = u,p > 2 (5)
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x(s,t) =0, (s,t) € 02 x (0,T) (6)
with initial Showalter — Sidorov condition
(A = A)(z(s,0) — z0(s)) = 0. (7)

Equation (5) was first obtained by E.S. Dzektser [27]. Here unknown function x = z(s, t)
correspods to a potential of speed of the filtered liquid free surface motion; parameters
a € Ry, A € R characterize the environment, where a value of parameter A\ can be
negative; free term u = u(s,t) corresponds to an external load, i.e. to source and drain of
liquid. The physical sense of optimal control problem for the model is effective regulation
of filtered liquid flows in the layer.

1. Optimal Control Problem

Let H = (H,< -,- >) be a real separable Hilbert space identified with its conjugate;

(A, A*) and (B, B*) be dual (with respect to duality < -,- >) pairs of reflexive Banach
spaces, where embeddings

BCACHCA CB* (8)

are dense and continuous. Let L € L(A; A*) be linear, continuous, self-adjoint, nonnegative
defined, fredholm operator such that its orthonormal (in the sense of H) set of eigenvectors
{¢r} is a basis in space A, and M € C"(B;B*), r > 1, is s-monotone and p-coercive
operator, where p > 2 [11], with symmetrical Frechet derivative. Construct control space
U= L,0,T;A"), % + % = 1, and define a non-empty closed convex set U,; in space U.
Consider optimal control problem (1), (2) and define an objective functional as follows:

I ) :a/ux(t)—zd<t>||%dt+ﬁ/||u<t>| ot ot B =1, (9)

where z4 = z4(s,t) is a desired state. Consider a set
coimL = {x € A: (x,p) =0Vyp € ker L\{0}}.

Construct a space
d
X = {z| € Loo(0, T; coim L) N L, (0, T; B), d—f € Ly(0, T; coim L)}.

Due to embeddings (8), system {¢x} of operator L eigenvectors is total in B. Therefore,
construct Galerkin approximations of problem (2) solutions in the form

z™(t) = Z ai(t)pg, m > dimker L, (10)

1

k=
where coefficients ay = ax(t), k = 1,...,m, are defined by problem (3), (4).

Definition 1. A weak generalized solution of problem (2) is a vector function v € X,
which satisfy conditions

/T o) [ (L5 w) + (r(o).w) | dr = / P00 (),
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(L(z(0) —z0),w) =0, Ywe B, Vo € Ly(0,T).

Theorem 1. |[11] For any zo € B, T € Ry, u € L,(0,T;B*) there exists a unique
solution x € X of problem (2).

Definition 2. A pair (Z,a) € X x U,q is called a solution of optimal control problem (1),
(2), if

J(z,u) = inf J(x,u),
where pairs (x,u) € X x Uyq satisfy (2) in the sense of Definition 1; a vector function @
18 called an optimal control.

Theorem 2. [11] For any zo € B, T € R, there exists a solution of optimal control
problem (1), (2).

Now consider the optimal control problem for Boussinesq model (1), (5) — (7). Let
Q) C R” be a bounded domain with boundary of class C*. Suppose H = W, (Q), A =
Ly(Q2), B = L,(Q2). Define scalar product in H by formula

(@) = [ aids oy € H. (11)
Q
where g is a generalized solution of homogeneous Dirichlet problem for Laplace operator
(—A) in domain Q. Let B* = (L,(Q))* and A* = (L2(92))* be conjugate respect to
duality (11) of the space. For thus defined A* and B*, there are dense and continuous
embeddings (8). Denote a sequence of eigenfunctions of homogeneous Dirichlet problem for
Laplace operator (—A) in domain € by {¢x} and a corresponding sequence of eigenvalues
enumerated in nondecreasing order with respect to their multiplicities by {Ax}. Define
operators L and M in the following way:

(Lx,y) = /(/\xgj + xy)ds, x,y € A;
Q

(M(z),y) = / 2 2eyds, @y e B.
Q

Lemma 1. [26] (i) For any A > —\; operator L € L(A; A*) is self-adjoint, fredholm and
nonnegative defined, and orthonormal set {py} of its functions forms a basis of space H.
(ii) Operator M € C*(B; B*) is s-monotone and p-coercive.

System {;} due to embeddings (8) forms a basis in space W, '(£2). Choose in W, ()
orthonormal system {p;} such that span{ei, ¢o,..., ¢} = ker L, where | = dimker L.
Construct Galerkin approximations of problem (5) — (7) solution in the form (10), where
coefficients a; = a;(t), i = 1, ..., m, are defined by system of equations

Sz + xp; + ala™ P 2™ p;)ds = [um™pids, i =1,...,m, (12)
Q 0

and Showalter — Sidorov conditions

/ (A(@m(s,0) — x0(s))Pi + (£m(s,0) — zo(s)pi(s)] ds = 0. (13)
Q
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Set of equations (12) is a degenerate system of ordinary differential equations. Suppose
T, € Ry, T,y = Trn(xo), B™ = span{p1, va, ..., ©m}-

Lemma 2. [26] For any xy € L,(2) and m > [ there exists a unique local solution
™ e C"(0,T; B™) of problem (12), (13).

Construct a set

L,(Q), ecm A > —\y;

coim L = { {x € L,(Q) : (x,¢1) =0}, ecim A = — Ay,

and a space

d
X ={z] x € L(0,T;coim L) N L,(0,T; L,(2)), d—f € Ly(0,T;coim L).

Definition 3. A weak generalized solution of equation (5) is a function z € X, which
satisfies the condition:

E((p(t) S{(Amtw + zw + oz|a7|p2xw)ds} dt = { [(p(t)s{uwds} dt
Yw e L,(Q), Yo € Ly(0,T).

Theorem 3. [26] Suppose p > nz—fQ, A > =)y, then for any xo € B, T € Ry, u €

L,(0,T; B*) there exists a unique solution x € X of problem (5) - (7).

Now consider the optimal control problem for generalized Boussinesq filtration model.
In cylinder Q7 = Q x (0,7") consider optimal control problem

T
J(z,u) = o|x — zd||’£p(Q) + 5/ ||u||‘(1Lp(Q))*dt —inf, a+ 5 =1. (14)
0

Choose a closed and convex set Uyq C L, (0,71 (L,(£2))*).

2n

Theorem 4. [26] Suppose p > =5,
control in the problem (5) — (7).

A > =)y, then for any xy € B there exists an optimal

2. Algorithm of the Numerical Method

Our goal is to find the approximate solution of optimal control problem (1) by the
solutions of problem (2). In [25] we consider an algorithm of the numerical method for
solving the optimal control problem for a semilinear Sobolev-type equation, which is based
on the Galerkin method together with the decomposition method. However, the algorithm
may be applied only to the equations with linear component. Let us propose an algorithm
of the numerical method, which is based on both the modified Galerkin method and the
method of multistep coordinate descent. The algorithm allows to avoid such restrictions.

Let o(L) be spectrum of operator L. Because of the properties of operator L, its
spectrum o (L) is non-negative, discrete, finite multiplicity and thickens only to +o0. Let
{A\i} be a set of the eigenvalues, which are numbered in non-decreasing order according to
multiplicity. Let {(;} be a set of the corresponding eigenfunctions which are orthonormal
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with respect to the scalar product < -,- > from H. They form an orthonormal basis in
space H.

Let us find an approximate solution of problem as the sum 10 where m € N, m > [,
| = dimkerL (to take into account the effects of the reduced equation). Represent the right
side of equation (2) as

W(s,6) = Y < uls.61(5) > oils) = Y wilt)ei(s) (15)

We substitute Galerkin sums (10) and (15) to equation (2). So we get a system of
nonlinear differential equations (3). Note that system (3) consists of non-linear equations.
Therefore unknowns a;(t) can not be express through control u;(¢). It imposes additional
difficulties for finding a solution of optimal control problem (1), (2). Substitute Galerkin
sums (10) and (15) in the objective functional and get a definite integral of the function,
depending on the unknowns a;(t) u u;(t), i = 1,...,m, by interval [0,7]. Let us search
unknowns w;(t), i = 1,...,m, in the form

N
n=0

choosing coefficients b;, such that functions wu;(f, N) minimize functional (9). Control
coefficients b, form matrix B having size of m x (N + 1). Depending on parameter A,
equations of system (5) can be differential or algebraic.

Consider these cases.

(i) Let A ¢ o(L). In this case all equations of system (3) are ordinary differential
equations of the first order. We find m initial conditions in the following way. Multiply
conditions (4) on eigenfunctions ¢;(s),i =1, ..., m, scalar in H.

(ii) Let A € o(L). In this case the equations of system (3) with numbers 14, ...,1; are
algebraic, and the rest ones are differential. From the Showalter — Sidorov condition, we
find m — [ initial conditions in the following way. Multiply conditions (4) on eigenfunctions
@i(s),i =1,...,m, scalar in H.

An algorithm of finding the approximate solution of problem (1), (2) is reduced to
six steps. The first 4 steps are based on projection Galerkin method and similar to the
appropriate steps in the algorithm in [25]. The subsequent steps allow to minimize objective
functional and are based on a modification method of the multi-step coordinate descent
with memory, which is proposed in [23].

Step 1. Find eigenvalues and eigenfunctions of operator L, that is, the solution of
problem < Lp,v >= X < ¢, v > with appropriate boundary conditions.

Step 2. Find number m such that from m we can calculate the approximate solution
using the condition: m > [, [ = dimker L.

Step 3. Check by specified parameter \: the mathematical model corresponds to
degenerate case or to non-degenerate case.

Step 4. Depending on cases (i), (ii), generate a system of differential-algebraic equations
for the unknowns a;(t), ¢ = 1,....,m, and by,, ¢ = 1,....m, n = 1,..., N, with the
corresponding initial conditions.
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Step 5. Generate an objective functional. Find minimum of the functional and
minimum point u™ = col (Zg:o b, t", ..., Egzo bmnt”) using the descent method. Finding
unknowns b;, is reduced to the following sub-steps.

Step 5.1. Set values of parameters required for the calculation. They are a maximum
step Amax > 0, a minimum step h,,;, > 0, a value of admissible error ¢ > 0 of cost
functional calculation, a value of change step r € (0, 1), an initial value of control matrix
B.

Step 5.2. Let p be an iteration number of the main calculation (p=0, ...); l;fn be
coeflicients of function w;(t), forming matrix n x (/N + 1) at p-th step; J, be approximate
value of the quality functional, calculated at p-th step. In each row of array B, from the first
and sequentially to the last one, we define coefficient 5”, to be change as follows. Calculate
the value of functional J, for given initial matrix B. Substitute B in the right part of
system of equations (3). On the basis of Euler method, we numerically find unknowns
a;(7j),i = 1,...,m,j = 0,...,n. Using Gauss quadrature formula in appropriate nodes
7;,J = 0,...,n, we numerically calculate the value of functional .J,. After that, we use the
method of multistep coordinate descent with memory [23] and change elements by; with
an initial value of all other elements in order to define a value l;lj such that the obtained
value Jy; is minimal. Denote corresponding element by I;Ij. Note that only IA)U should be
changed. Then we conduct a cycle by the elements of the second row and so on. The result
is a new array. Each line of such new array contains a unique changed element. Such new
array is used in the main calculation. For each row, we fix value A; of the step, which
provides the minimum value of the quality functional. In the next iteration, elements of
i-th row are change from A;-th number (not from hy.-th). It significantly increases the
speed of calculations.

Step 5.3. Calculate a value of functional J, by obtained matrix B.

Step 5.4. Check that the stop condition

ARFAUSIEE

is hold. If it is hold, then we set b;; = ij, i=T1,n,j=0,Nand J = J,.
Step 6. In given points 7; € [0, T'] for given values b;,, we calculate the value of functional
J(z™ u™). Thus, value u™(s,t) is found. Calculate values a;(t) and 2™ (s,t).

3. Numerical Study of Model to Regulate the Distribution
of the Filtered Liquid Free Surface Movement Speed Potential

In cylinder Q7 = (0,1)x(0,T),T > 0 we consider a generalized filter Boussinesq model
(5), (6) with initial Showalter — Sidorov condition (7). Our goal is to find the approximate
solution of optimal control problem (1) by solutions of problem (5) — (7), where the cost
functional is given as

T T 1
J(x,u) ﬁ//|$ s,t) — za(s,t)|Pdsdt + (1 — //\u|qudt, (16)
00 00
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where 117 + % = 1. In view of the proposed method, we search approximate solution (s, t)
as the sum

T(s,t) = Zal wi(s), m>1, (17)
i=1
where {¢;} is a set of all solutions of Sturm — Liouville problem on eigenvalues
(A=A)X(s) =0, s € (0,0);

X(0) = X(I) = 0.

Such spectral problem is solvable for a countable set of eigenvalues );, and functions {p;}
form orthonormal system (with weight #) of functions

N}

- oids =< @5, o >= L 1=
I PiP1as =< Pi, Pr >= 0, l?é i,
0
where ¢; = @i(s) = \/g sin(T2), a \; = —i*. Represent the right side of equation (5) in

the form .
Z u(s,t), ) > wi(s Zul wi(s (18)
), i

Let us search unknowns u; (¢ ,m in the form

N
= bt", (19)
n=0

choosing coefficients by, such that functions u;(¢, N) provides minimum to functional (16).
Sample. Consider problem (1), (5) = (7) incase of A = =1, p =4, l =7, T = 1,
B=1 m=5 N =5, with initial state

xo(s) = 2sin(s) + sin(2s) + sin(5s)

and desired system state
1
zq(s,t) = 1 sins + (2 4+ 1) sin(2s) + 0, 6t* sin(3s) + 2t sin(4s) + sin(5s).

The state should be achieved as a result of the numerical solution with the least of control
costs.

The result of programm performance is following. We find the control coefficients
(Table 1). They provide functional value J = 3,971911. For obtained control coefficients,
we find the numerical solution of problem (5) — (7) (Table 2). A diagrams of approximate
solution Z(s, 1) and desired state z4(s, 1) at moment ¢t = 1 are shown in Figure.
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Table 1
bio =0 b1 =0,39321 | bio =0 | by3 =0 | byy = 0,32853 bis = —0,02342
by =0 bay = 0,6752 | by =0 | beg =0 | bay = —0,60952 | bes = 1,6272
bsg = 0,09648 bs; =0 bso =0 | b33 =0 ] b3y =0 bss = 1, 32086
by = —0,05225 | byy = 0,37955 | bag =0 | byz =0 | byy =0 bys =0
b50 - O b51 = O b52 == O b53 - O b54 - 0 b55 - 3,42518
Table 2
t aq (t) a9 (t) as (t) a4(t) as (t)
0 ]0,388145 | 1,79222 | O 0 3,22603
0,2 | 0,337140 | 0,895050 | 0,0966660 | 0,0292608 | 2,14099
0,4 | 0,542735 | 0,804680 | 0,28903 0,199218 | 1,90507
0,6 | 0,763540 | 0,898925 | 0,532845 | 0,432169 | 1,89978
0,8 1 0,952825 | 1,08606 | 0,839645 | 0,752255 | 2,09191
1,0 | 0,985030 | 1,34000 | 1,24176 1,22444 2,59138

wla

INE

Diagram of problem (1), (5) — (7) numerical solution at moment ¢ = 1
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O MOANPUIINPOBAHHOM METOJJIE MHOI'OIIIATOBOT'O
ITIOKOOPIMHATHOI'O CIIYCKA 3AJTAYU
OIITUMAJIBHOI'O YIIPABJIEHU S

TJI TIOJIVJINHENHOM MOJIEJIN

COBOJIEBCKOI'O TUIIA

H.A. Manaxosa

B pabote ommcan 4mciieHHBIN METO/I PENIEHNs 33,149l ONTUMAJIHLHOTO YIIPABJICHUS JIJIst
ITOJTYTMHEHON MOZe/ Il COO0JIEBCKOTO TUIIA, OCHOBAHHBIA HA MOIUMUIIMPOBAHHOM IIPOEKITH-
OHHOM MeTojie l'ajilepkiHa U MeTO/ie MHOI'OIIIArOBOI0 [TOKOOPAMHATHOIO CIIYCKa C HAMATHIO.
HeobxoauMocTh MOCTPOEHNST HOBBIX YHCJCHHBIX METOJIOB PEIIEeHUsT HeJIMHEHHBIX 3a/1a4 OIl-
TUMAJIBHOTO YIIPABJIEHUS CBSI3aHA C OOJIBIIUM KOJUYECTBOM IPUJIOKEHUI M TPYIHOCTHIO
HaXOXKJIEHUs WX aHAJIATUIeCKnX pertennii. Ha ocHoBe JOCTATOYHBIX YCTIOBUU CYIIECTBOBA-
HUsT ONTUMAJIBHOTO yipasieHus pertennsvu 3aaa4qu [loyosrepa — CumopoBa 1 oTyu-
HEHHOrO ypaBHEHUsI CODOJIEBCKOIO THUIA C S-MOHOTOHHBIM U P-KOIPIUTHUBHBIM OIIEPATOPOM
YHCJIEHHO UCCJIeJJOBaHa MaTeMaTHIecKas MOJIeJIb PETryJINPOOBaHUS paclpeiesleHns IIOTeHIIN-
aJia CKOPOCTH JIBUKEHUS CBOOOIHON MOBEPXHOCTU (PUIIBTPYIOIIENcst XKUAKOCTU. [IpuBeieHs
Pe3yJIbTATHI BEIYUC/IMTETLHOTO IKCIIEPUMEHTA, IeMOHCTPUPYIOIIHe paboTy MPeJIOXKEHHOTO
YHUCJIEHHOTO METO/A.

Karouesvie caosa: ypasuerus coboaesck020 muna; 360a4a ONMUMAALHO20 YNPABAEHUA,;

wucaenroe peuterue; memod Laiepkura; mMemood MHo20UG2068020 NOKOOPIUHAMHO20 CNYCKA.
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