THE USE OF THE INVERSE PROBLEM OF SPECTRAL ANALYSIS TO FORECAST TIME SERIES
Abstract
The paper proposes a new method to forecast time series. We assume that a time series is a sequence of eigenvalues of a discrete self-adjoint operator acting in a Hilbert space. In order to construct such an operator, we use the theory of solving inverse problems of spectral analysis. The paper gives a theoretical justification for the proposed method. An algorithm for solving the inverse problem is given. Also, we give an example of constructing a differential operator whose eigenvalues practically coincide with a given time series.
Keywords
The paper proposes a new method to forecast time series. We assume that a time series is a sequence of eigenvalues of a discrete self-adjoint operator acting in a Hilbert space. In order to construct such an operator, we use the theory of solving inverse
Full Text:
PDFRefbacks
- There are currently no refbacks.