ALGORITHMS FOR CALCULATING EIGENVALUES OF SECOND ORDER PARABOLIC DIFFERENTIAL OPERATORS ON QUANTUM STAR GRAPHS WITH TIME-VARYING EDGES

Sergey I. Kadchenko, Lyubov S. Ryazanova

Abstract


This paper develops algorithms for calculating the eigenvalues of partial differential operators on star graphs with time-varying edges. The obtained analytical formulas allow finding the eigenvalues of such operators of the required order at a given time. Numerical experiments on calculating the eigenvalues of the problems under study are carried out in the Maple mathematical environment. The calculations performed show the high computational efficiency of the developed method. Using the analytical formulas for calculating the eigenvalues of the operators under consideration obtained in the paper, it is possible to develop algorithms for solving inverse spectral problems for operators on quantum graphs with time-varying edges/


Keywords


graphs; eigenvalues and eigenfunctions; discrete and self-adjoint operators; regularized trace method; Galerkin method

Full Text:

PDF

References


Keating J.P. Fluctuation Statistics for Quantum Star Graphs. Proceedings of an AMS-IMSSIAM Joint Summer Research Conference on Quantum Graphs and Their Applications, Snowbird, 2006, vol. 415, pp. 191-200. DOI: 10.1090/conm/415/07869

Matrasulov D.U., Yusupov J.R., Sabirov K.K., Sobirov Z.A. Time-Dependent Quantum Graph. Nanosystems: Physics, Chemistry, Mathematics, 2015, vol. 6, no. 2, 173--181. DOI: 10.17586/2220-8054-2015-6-2-173-181

Provotorov V.V. Eigenfunctions of the Sturm-Liouville Problem on a Star Graph. Sbornik: Mathematics, 2008, vol. 199, no. 10, pp. 1523-1545. DOI: 10.1070/SM2008v199n10ABEH003971

Kadchenko S.I., Zakirova G.A. Computation of Eigenvalues of Discrete Lower Semibounded Operators. Applied Mathematical Sciences, 2016, vol. 10, no. 7, pp. 323-329.

Kadchenko S.I., Kakushkin S.N. The Calculating of Meanings of Eigenfunctions of Discrete Semibounded Frombelow Operators via Method of Regularized Traces. Vestnik of Samara University, Natural Science Series, 2012, no. 6, pp. 13--21. (in Russian)

Kadchenko S.I., Kinzina I.I. Computation of Eigenvalues of Perturbed Discrete Semibounded Operators. Journal of Computational Mathematics and Mathematical Physics, 2006, vol. 46, no. 7, pp. 1200-1206. DOI: 10.1134/S0965542506070116

Kadchenko S.I., Stavtceva A.V., Ryazanova L.S., Dubrovskii V.V. Algorithms for the Computation of the Eigenvalues of Discrete Semibounded Operators Defined on Quantum Graphs. Bulletin of the South Ural State University, Series ``Mathematics. Mechanics. Physics'', 2023, vol. 15, no. 1, pp. 16-25. DOI: 10.14529/mmph230102 (in Russian)

Kadchenko S.I. Numerical Method for the Solution of Inverse Problems Generated by Perturbations of Self-Adjoint Operators by Method of Regularized Traces. Vestnik of Samara University, Natural Science Series, 2013, no. 6, pp. 23-30. (in Russian)

Nikiforov D.S. [A Model of Quantum Graphs with Edges of Varying Length]: diss ... cand. tech. nauk.- St. Petersburg, 2018. - 125 p. (in Russian)

Mikhlin S.G. Variational Methods in Mathematical Physics. Moscow, Nauka, 1970. (in Russian)


Refbacks

  • There are currently no refbacks.


 Save