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The paper studies differential equations with linear delay of neutral type. Equations
with linear delay occur in problems of mechanics, biology, and economics. A feature of
such equations is that the delay is unbounded, which significantly reduces the applicability
of traditional methods for studying stability problems for similar systems. One of the
approaches to studying asymptotic properties is to replace the argument. The system is
reduced to a system with a constant delay, but in this case an exponential factor appears
on the right side of the system obtained, and the right side of the resulting system becomes
unbounded as t > oco. The asymptotic properties of systems without neutral terms were
studied by the authors earlier. Taking into account the asymptotic properties of these
systems (without neutral terms on the right side), an analysis of the asymptotic properties
(boundedness, stability and asymptotic stability) of some systems of a neutral type is carried
out. Since the property of stability is a more subtle property than the property of asymptotic
stability, we study a system of neutral type with perturbations, which is simply stable when
unperturbed.
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Introduction

A large list of systems with linear or proportional delay occurring in problems of
physics, mechanics, biology, economics, queuing theory, etc. is given in [1|. The papers
[2], [3], and [4] studied the systems without neutral terms and those reducible to them. In
particular, the problem of vertical oscillations of a locomotive pantograph runner passing
through the elastic support was considered in [4]. When moving away from the support, it
is necessary to consider equations of neutral type. Among the works devoted to the study
of neutral type systems, we note [5] and [6]. We consider a linear normalized space R™, in
m

which we define the norm of the vector |[w|| = > |w;| w = w; ", where w; (j =1,1,...m)
j=1

are the components of the vector w and T is the transpose sign, for example, by equality

|w|| = Z |w;|. We define the norm of the matrix D = d,j(i,j = 1,...,m) in accordance
with the norm of the vector |7, p.12]: ||D|| = maxz |d;;|). This choice is due to the fact

that the norm of a matrix is defined in almost the same way as the norm of a vector. We
also consider the norm of the vector function w(7) on the interval 7 € [0, o]:

lw(™)lle = sup [lw(T)ll, o= —In(u). (0.1)

<r<o

We will need the norm on the segment in the future, since we are interested in limited
solutions and intend to apply the apparatus of the theory of variable systems to study their
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properties [8, p. 23]. Accordingly, in the future replacement of the argument 7 = In(t/t,),
the initial system with linear delay is led to a system with constant delay. We give some
definitions necessary in the future 9, p.161]
Definition 1. A continuous solution to a neutral type system with delay ¢ = const
o>0
dx(7)/dT = A(T)2(7) + B(1)2(1 — 0) + R(7)dx(T — 0)/dt, T > T, (0.2)

determined by a continuously differentiated initial vector-function ¢(&): 79 — o < € < 79,
is called bounded if there is a constant C' > 0, such that boundedness of the solution
x(t, ¢(£), ¢'(€)) follows from the inequality ||z(7)]| + [|2/(7)|| < C.

Definition 2. A solution to a neutral type system with delay ¢ = const, ¢ >
0 z(r,0(&),¢'(§)) is called stable if, for any ¢ > 0, there is d(e 0 such that
(7, ¢(), ¢ (E))|| < &, 7 = 70 as soon as [|¢(&)]| + [[¢"(E) ]| < 6.

Definition 3. If z(7,¢(£),¢'(), being stable, has also the property of
Tlgglo z(7, ¢(£), ¥’ (§)) = 0, then the solution is asymptotically stable.

If we now take into account the norm of the vector function defined by equality (0.1),
then with this normalization, the linear space of continuous vector functions will be a
Banach space [8, p.162]. We denote it as C°. In the future, we will use some properties
of this space. In addition, taking into account the introduced definitions of stability and
asymptotic stability, we will consider the space C'* which is the space of continuous vector
functions that have a continuous derivative [9, p.159]. Since for linear systems, the uniform
boundedness of the solution implies Lyapunov stability [5, p.194], and due to the fact that
the authors have previously obtained asymptotic estimates for some of the systems under
study using similar uniform estimates which we will use in the future, we will often prove
the uniform boundedness of linear time delay systems.

Consider a linear homogeneous system of neutral type with a delay linearly dependent
on time (argument)

dx(t)/dt = Ax(t) + Ba(ut) + R(t)dz(ut)/dt, >ty >0, p=const, 0 <p<1. (0.3)

The solution to the system (0.3) is defined on the initial set s € [uto,to] by the vector
function ¢(s) € C'. A and B are constant matrices m x m, R(t) is a continuously
differentiable m x m matrix, and z(t) € R™. By replacing the argument 7 = In(t/ty),
we obtain a system with constant delay o = —In(u), o > 0.

dz(1)/dr = tye"[Az(T) + Bz(T — 0)] + pR(7)dz(T — o) /dr, T > 0. (0.4)

~

o =—In(u), 0 > 0. Here R(T) = R(toe”). We will study the question of the system (0.4)
stability depending on the properties of the matrices A, B, and R(T).

1. Boundedness of the Solution of a System Without Neutral
Members

Let us first consider the asymptotic behavior of the system without neutral terms. Let
Re()j) <0, j=1,..m, (1.1)

where \; are the eigenvalues of matrix A. Therefore, there is a value 8y > 0: —fy =
max;(Re();)) + ¢, Re()\;) < —fo. Then, along with this, we assume that the eigenvalues
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p of the matrix —A( — 1) B satisfy the inequality |p| < 1, while all eigenvalues |p;| = 1
correspond to Jordan blocks of size 1 [8, p.21] .

Theorem 1. When the conditions imposed on the eigenvalues A given at the (1.1) and
|p| < 1, (while all eigenvalues |px| = 1 correspond to Jordan blocks of size) the solution of
the system

dy(t)/dt = Ay(t) + By(ut) (1.2)
uniformly bounded.
Proof. Having differentiated both parts of system (1.2), we obtain a system of the form

(dy'(t))/dt = Ay'(t) + pBy (ut), t>to/p, y'(t) = dy(t)/dt. (1.3)

It is known [9, p.20] that for ¢ > ¢;/p, a solution to system (1.3) exists. Then, due to
the fact that the inequality |p;| < 1 holds for the eigenvalues p; of the matrix —pA~'B
(taking into account (1.2)), the estimate follows from the results of work [2]

ly®) < Mt/t)® s ()], M,B=const, M>1, 8>0.  (14)

T (uto<s<pl—1)to)

The constants M and 3 are the same for any tg > t§, t; = const, ¢ is fixed, and tj > 0).
Now, from equality (1.2) we obtain the inhomogeneous difference matrix equation

y(t) = =A™ By(ut) + A7/ (t). (1.5)

Assuming that the value y’(t) is inhomogeneity, we write the solution to system (1.5) using
the formula for variation of constants [§]:

y(t) = (AT B)"o(u""'t) +Z pl — ) Ay (1), (1.6)

In view of the assumptions regarding the eigenvalues of the matrix —A~!B, the following
inequality holds:

[(=A'B)"|| < My, M; =const, M; >1, n=1,2, ... (1.7)

Note that if we do not take into account the properties of the eigenvalues of the matrix
A7'B, but only taking into account the estimate

lexpA(t — s)|| < Myexp—po(t —s), My = const, My > 1, (1.8)

when writing the solution to system (1.2) in integral form (considering the terms with
delay to be inhomogeneous), then, giventhis integral solution to system (1.2), we have the
inequality

sup [y (1) < [IAI Ko+ [|BI] sup y(t), Ko= Mo[l+ u] (1.9)

t€(to,n™ o) t€[pto,to] 60

Hence from (1.4), (1.6), (1.9) we have the estimate

n—1
_ _ Al Ky + || B
o <My (s (0 + 1470 Y ||y;-||]<M1 frepary [ L g
=0
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yn=sup [ly(t)l. (1.10)
te(pt=m,pm]
From estimate (1.10) it follows that the solution of system (1.2) is uniformly bounded
under the boundedness ||yo(t)]|.

As follows from [5, p. 194], due to the uniform boundedness of the solution to the
linear system (2), its solution is stable. Note that the condition under which all eigenvalues
|pr|=1 correspond to Jordan blocks of size 1 is essential. If this condition is not met, the
degenerate (difference) system

y(t) = —A7' By(ut)

is unstable. It is shown in [10] that in this case the solution to the original system (2) is
also unstable.

The asymptotic stability of systems of the form (0.4) for sufficiently small ;1 was studied
earlier in [6]. The instability of some systems, such as (0.3), for example, for positive p
sufficiently close to unity, can be solved using alternating Lyapunov-Krasovsky functionals
of type

m t
V=W(x)+ Z v, /xﬁ(S)ds,
Jj=1 ut

where W (x) is a quadratic form (not necessarily positive definite); scalar values v; > 0.
Let us give a simple example. Consider the first order equation

dx(t)/dt = ax(t) + b(t)x(ut) + 7(t)dx(ut) /dt (1.11)

where a = const, a > 0, b(t), and 7(t) are scalar functions of time (argument) t. Consider
the equation without neutral terms

dzo(t)/dt = az®(t) + b(t)z° (ut) (1.12)

To obtain sufficient conditions for the instability of the solution to equation (1.12), for
the instability of the solution to equation (1.12), we introduce the functional V(2% t) =

t
()2 + @ [(2°)*(s)ds. Here the constant & is negative. Assuming & = —a, calculating the
ut
derivative dV°(2%t)/dt = a(z°)? + 20(t)x° (t)xo (ut) + pa(z®(ut))? by accoding of equation
(1.12), and requiring positive definiteness of the resulting quadratic form of the variables
2°(t), zo(put) |9, p.147], we obtain sufficient conditions for the instability of the solution to
shortened equation (1.12)

a>0,[b(t)] <+ /pla—e), (1.13)

where ¢ is a sufficiently small positive number. In fact, there is a region V' > 0, the
boundaries of which are the curve of form z(t) ~ O(e*=®%) [1] and the line z = 0. In
this region, the derivative dV(x,t)/dt is also definitely positive, therefore, by virtue of
the analogue of Chetaev’s theorem [5, p. 182|, this implies instability of the solution to
equation (1.12).

Let us now consider a shortened system (i.e. a system without neutral terms, resulting
from system (0.4) To study the instability of such systems, one can use alternating
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functionals of the form

e

Vi(T, 2(7), ;) = OTW(Z)+ZVj/z]2-(S)ds, (1.14)

t

W(z) - is a quadratic form (not necessarily definitely positive), and v; are constants. In
this case, using the functional

dzo(7)/dr = € [azo(7) + b (r — o], (1.15)
and calculating its derivative by virtue of a shortened equation of the form (0.4),
(dzo(7))/dT = €"[azy(T) + b2°(T — 7)),
we get the relation

efT

dvi(r, 2°(r),2%) /dr = — ; (20(7))* + [a(2°(7))? + 202°(7)2°(7 — o) + a(2°(7 — 0))?].

0

The expression in square brackets on the right side is definitely a positive quadratic form
when the inequalities are satisfied:

a>0,[b < a. (1.16)

Let us show that inequalities (1.16) are sufficient conditions for the instability of the
shortened equation (1.15).

Consider the functional V;(7,2%(7),2%). Obviously, for the initial function ¢q(6)
0:ty—o0 < () < to, do(to) = to V1(0,2°(0), 2%(po(0)=1, i.e. dVi(r,2(7),2%)/dr >
Assume that the solution of the shortened system is stable, i.e. 30 <m < M: 0 <m
12°(7)|| < M (7 > 0). Then for sufficiently large 7 we have the inequality V;(7, 2%(7), 22)

» YT

XN =2

¢
— [ (m—e€)ds) = —(m —¢€)o < 0. But in the region 0 < m < [|2(7)|| < M the derivative
t—o

—T

dVi(,2°(), 27)/dr > 0, since not only the value ¢—(2(7))? > 0 is small for sufficiently

[e.e]
large ty > 0, but also the integral [e *ds = 1 converges. Consequently, the function
0

2%(7) cannot remain in any bounded region 0 < m < ||2°(7)|| < M (7 > 0), while
V1(0,2°(0), 2%(é0(#)) — oo. We obtain the instability of the solution to equation (1.15).
Obtaining sufficient conditions for instability is also possible for a variable value of b(7),
and the instability region has the form (1.13) for u = 1, i.e. it is wider than the region
obtained using the functional V(z?,¢).

Let us now consider the asymptotic behavior of the solution to a first-order equation
of the form (0.4)

dz(1)/dT = toe"[az(T) + bz(T — o) + r(7)dz(T — 0)/drT.

Assume that the function r(7) has a bounded continuous derivative. We represent this
equation in the form
d{z(7) + r(1)z(t — o)} /dT = €"[az(T) + bz(T — 0) + %7"(7)2(7 —o)],
(1.17)
r' (1) =dr(T)/dr.
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In the expression in square brackets on the right side of (1.17), for sufficiently large to, it
is possible to neglect the term containing the multipliers of the value el — 7) /¢y due to its
smallness [11]. Let us now consider the first approximation equation

d{ZN(1)+r(1) (1—0)} Jdr = "[az' (1) + bz (1 —0)] = F(7,2L) 7/(7) = dr(7)/dr. (1.18)

Let Z(1,2})) = 2'(7) + 7(7)2' (7 — o). With the initial function we have chosen, the
following conditions are met:

1) 0<V(r21),2(r,2) < M
2) dV/dr = lim inf[V(r + A7) = V(7) 2 0

3) if V(7,2 Z(7,2!)) > a, then dV/dr > B(a). Then, as follows from [5, p. 182], the

Y YT T

solution 2!(7) to the first approximation equation is unstable. Consequently, the solution
to the original equation is also unstable, which can be proven using the methods proposed

in [11] and the convergence [ e *ds). Let us again consider the system (0.3) and assume
0

that among the eigenvalues A; of matrix A, there is an eigenvalue Ap: Re (o) = B =
max Re (A;), > 0. We assume that the matrices B(t) and R(t) are continuous and have
J

bounded first derivatives.

Lemma 1. If the eigenvalue Ny exists, the solution to system (0.3) is unstable. Let us
give a brief proof of this statement.

We search particular solution in form Z(t) = Je*. Here 7 is m-vector and quantity A
— scalar. If we substitute this expression in the system (0.3), then get an expression

MeNE = Aye + B(t)yeM! + R(t)d/dt (yeM"). (1.19)
We divide both parts on the quantity e, we receive next correlation
ME = A7 4+ B(t)7e** Y 4 R(t) Ay n =1

We believe, that Re(A) > 0. Then two last members in right part of this correlation aspire
to zero at t — oco. Top equation has the look

(A-XE)y=0

and by 7 # 0 we obtain
det A— \E =0.

So far so among own numbers of matrix A there is quantity Ao and Re(\g) > 0, then by
sufficiently large t we see, that system (0.3) has the particular decision Z(¢) of kind

(t) = 7 4 o(1)(e?). (1.20)

8l

Hence, system (0.3) is unstable at any matrices B(t), R(t). Statement is proven.
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2. Study of the Asymptotic Properties of Some Systems of Neutral
Type

Let us consider the asymptotic behavior of the solution to the system (0.4), assuming
that the corresponding system without neutral terms is stable, but not asymptotically. We
also assume that the inequality is true:

I1R;|l» < L§@, L,g=const,L>1,0<q<1, IRl = max ||R(7)]. (2.1)
T€[jo,(j+1)o]

Theorem 2. Under the conditions of Theorem 1, inequality (2.1), and the boundeness of
|z0(7)|| and ||z((7)|| values, the solution to system (0.4) is uniformly bounded.

Proof. Now it is more convenient to move to a countable system of equations on a
finite interval [0, o], namely, by setting z,(7) = z(7 + no), we obtain a countable system
of differential-difference equations

A2 i1 (7)/dT = 7" t0eT[Azp i1 (7) + Bz (7)) 4+ 1~ " Vtoe™ Ry (7)[A2n (7) + Bzp_1(7)]+
D406 Ry (T) R (7) [A2n1 (7) + Bna (7)) + ot
+to€" Rps1(T)Ry(7)... Ro(7)[Az1(T) + Bzo(7)]+
+Ry 1 (T)Ru(7)... Ry (T)d2o(7) /dT, 0 < 7T <0, (2.2)

defined by the initial vector function zo(7 — o) under the boundary conditions

2n41(0) = z,(0). (2.3)

We introduce the following operators in the Banach space:

T

Tnrw(s) = Uy(r,0)w(o) + / Un(T,8)B

foe w(s)ds, Uy(r,s) = eXp(@(eT —e%), (2.4)
e pr

that is, the stepoperator [8, p. 213|, and the integral operators

cw(s) = [Uy(r,s) R":nl_(f)Atoesunflw(s)ds,

Iz

IR (T)w(s :bf Un(7, 8)Rns1(8) Ry(8)... Rj12(8) 2 [B + pRji1(s) AJw(s)ds,
1

j=1,..,n—1, (2.5)
IE (Tw(s) = OfUn(T, S)Rn+1(S)Rn(S)...RQ(S)%BU}(S)dS,
DE(T)w/(s) = E)fUn(T, S)Rui1(S)Ru(8)... Ri(s)w'(s)ds, w'(s) = d/dsw(s).

Let’s consider some properties of the given operators. Obviously, zU(7), which is the
solution to the unperturbed equation, i.e., equation without neutral terms, similar to

(1.2) can be written in operator form:

22+1(T) = Tnyng(s), n=0,1,2,.. (2.6)
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A very rough estimate ||T,, .|| < K is valid. Due to the fact that the product of operators is
defined in the Banach space, the solution to the unperturbed equation can be represented
step by step in the form

N
[\
—~

2
N—

I

Ti(7)To(s1)20(s) = Uy (7, 0) [UO(U, 0)zo(0) + ZesBzo(s)ds} +

+ [The = |Up(s1,0)z0(0) +fU0(51,s)Beszo(s)ds] .
0 0

Generally,

20 (T) =T (7)) L1 (8n)... Ta(s3) T1(s2) To(s1)w(s), 0<s<s1<5,<...<s,<7, T€[0,0].

In view of the estimate (1.10), the inequality is valid for any natural N:

_ A||Ky+ ||B
“H (s < My, My = My + My||A7Y| [M}

u(1 = pP)
0§81§82§...§SN§0'.

For the rest of the integral operators, in the space C°, taking into account the relation
(0.1), in view of the norm estimate of the Cauchy matrix U(7, s), the following very rough
estimates are valid:

MopL| Al _,
1T ()] < ————a""", (2.8)
Bo
117 (1)) < MolE W' 131, ) Mo(Lp)" ]| Al (g2) =0 <
Bo Bo
MO n n\n—j —

< g B+ LAl (@)™ (L)) 0 =V, (2.9)

M| Bl nyn
(7)< Oﬁo (Lp(q)")" . (2.10)
For the operators D¥(7), due to the boundedness of the derivative 2{(7), a similar estimate

is valid: (uL)" LM Iy
I DR < EE=2 ()0 < 2D (L ()" (2.11)

Boto Boto

Thus, we have obtained a family of linear operators bounded in the space C'. It is obvious
that for sufficiently large n > N, the value puL(q;)™ < 1, therefore, the series

Z (uL(q)") < oc. (2.12)
7=1

Using a formula similar to the formula for variation of constants, taking into account (2.4),
(2.5), the solution zn + 1)(7) to the perturbed equation (2.2) can be represented as

2n41(7) = To(7)20(8) + Frugr (1), Foga(7) = Trﬁl( )Zn(s)+
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—i—Iﬁn_l(T)zn,l(s) + .o+ 151(7')21 (s) + Ifjo(T)zo(s) + DE(1)2)(s), (2.13)
from which, taking into account (1.1) and (2.2), we obtain
n—1
2041(7) = Ynr (7) + Tn(7) [ [ Zi(s500) Fa(s1)+
2.14)
(1) [T Ti(sy40) Fa(s2) + oo+ Fra (7).
=2

Here y,(7) is the solution to the finite difference system without neutral members
corresponding to the unperturbed system (1.2),

n—1

HT}(Sj.i_l)Fk(Sk) =T 1(80)Tn—2(8n-1)-Tk(sk11) Fr(sk), 0<s<s1<82<...<s,<7<0.
j=k

From (2.14), taking into account (2.7), we obtain the inequality
1za1(M)lle < yna (7)o + MQZ 15 (Tl + 1 Ena (7)o (2.15)

Obviously,
1Frr (Dlle < NTe (72 (7 HaﬂLZHLf] Mz (D)l + 1 D5 ()| dzo(7) /|| (2.16)

Let us perform the reduction of similar terms at ||dzo/d7||s, ||2j(T)|lc j = 1,2,...n in the
right part of the inequality (2.15), taking into account (2.16). By designating the coefficient
at aj to ||z;(7)l|s, the coefficient at dg to ||dzo/d7||,, we consistently get

> qu(r)H] ,

05 = |1 Du(7)]l + My

n—j—1
& = Mgl + M | 35 Moons W+ TR | =00 =2
a2_1=an,nfl(T)H+M2HT5(T)H a, = | T ()] (2.17)

Consider the asymptotic behavior of these coefficients, taking into account (2.8)—(2.11).
For the value 0 from the first of the relations (2.17) we get the estimate

. LM, n . LMo My N
% < gy (Erl@)™)" + =2 Z:;(Lu(ql))

This value is uniformly bounded by some positive constant ¢ due to the convergence
oo
of the series > (Lu(g1)?)’. Let us now consider the asymptotic behavior of the values

j=0
aj,j=0,1,...,n. We get estimates:

(Lpe (qu)")" +

. M||B My My (|| B| + pL||Al]) <= MyMsLyu|| A
o < cg\o I 2 Mo (]| go I ")Z(Lu(ql)k)k+ 0 260 I qu
k=1
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n—1
Mol B[ + Lpl[All] Mo Mo (|| Bl + pL|All)

a” Lu(q)™)" + Li()*)+
; Bo (L)) Bo k_z-( )
=j+1
MoM>Ly||Al|
_i_wqﬁl’ j=1,2,...,n—2
Bo
n My[||B|| + Lu||A n wy ¢ MoMo Lyl Al
< MBI+ LA vy MoMaLplA]
B o
MoLy|| A
a, < %HHQ”H‘ (2.18)

From the first inequality in (2.18) it follows that the value af is also uniformly bounded,
and this is proved exactly in the same methods as the estimate for 7. Therefore, for the
zero approximation of the solution to the equation (2.15) we have the estimate

1280 < Mo[l|z0(T)|lo + ||dzo(7)/dT o], My = const, My >1, n=1,2,...  (2.19)

Next, consider the second estimate in (2.18). For the value a}, we have the following
presentation:

J ﬁo(%)j/2
MoMs(|| Bl + L] Al) <= ok, MoMoLul| Al
Bolqr )72 k;l([ﬂ((h) ) +—60(q1)j/2 (2.20)

Consider the asymptotic behavior of the expression standing on the right in curly brackets

in equality (2.20). Let the natural number N be determined as follows: Lug¥ > 1,

Lug*t < 1. Enter the number L = max {(Lu(q:)")'}. Then, since 1 < j < n — 2,
0<i<N

we have the estimate

(Lu(a)") (@) 72 < Ligs "™, g2 = var (2.21)
n—1
Consider the value (q1)™/2 > (Lu(q1)*)* = S,. For it, we obtain the estimate
k=j+1
= . 2 - . 2 . _ ]+1
Sp < Ll(go)V™ " 4 (go)V™H 4 ] < L%. (2.22)
—\2

Considering that the right term in curly brackets in (2.20) has the form %{W(@)w :

taking into account the estimates (2.21),(2.22) we obtain that the values in curly brackets
in the right part (2.20) are uniformly bounded for any j. Hence we get that a}, defined by
equality (2.20), does not exceed the value K(g2)’, K = const, K > 1. Similar estimates
can be proved for the values a;._,, ag.

Finally, we obtain that the limiting coefficients a3 satisfy a similar inequality,
therefore, the series a7 converges. This implies uniform boundedness of the solution to
the system (1.1) with boundedness of the functions zo(7) and z{(7).

Corollary 1. If conditions of the execution of Theorem 1 and the validity of the estimate
(2.1) are fulfilled, the solution to the system (0.4) is stable.
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Proof. We have already shown that the solution to the differential-difference system
(2.2) can be represented as a solution to the perturbed inhomogeneous difference system
(2.13). The solution to the corresponding unperturbed system is uniformly bounded
(hence, stable), and estimate (2.19) is valid for it. For a perturbed system (2.13),

perturbations are expressions that do not exceed the norm of the values > a||z.(7)]»
n

i a (2.23)
n=1

converges. Let us show that the solution to the perturbed system is stable. From (2.13),
taking into account (2.8)-(2.11) and (2.19), we have the following inequality:

and the series

lzn1 (M)l < Molllzo()llo + lldzo(7) /drllo] + Zaioﬂzk o
Therefore [2, p.70],
201 (Dl < Molllzo(r) o + lldzo(r) /7|l [T (1 + ai)
k=1

But the product

[ +a)
k=1
is bounded due to the convergence of series (2.23). Consequently, the solution to the
perturbed linear system (2.2) is uniformly bounded, and hence the solution to system
(0.4) is also stable.
Let us now consider a more complex perturbed system

dz(t)/dt = Ax(t) + (B + f(t)E)x(ut) + R(t)dz(ut)/dt, t >ty > 0, (2.24)

Here E is the identity matrix of the corresponding size, and f(t) is a continuously
differentiable monotonically decreasing vector function satisfying the estimate

_/t\ @ _ _
If@)] < K (%) , a, K =const, K >1, a>0. (2.25)

When estimate (2.25) is fulfilled, the solution to the perturbed system (2.24) is stable.
Indeed, if we go to the corresponding system (2.13), then for the perturbations that appear
due to the presence of f(t)) and have an estimate due to (1.5), (1.6):

%Wllzj(ﬂ“m j=1,2,..n (2.26)
0

||/Uj(7, s)esfoBéj(s)dsH <
0

we see that these terms on the right side are similar to the terms in (2.13) I(“ y(7)z5(s)
due to the convergence of the series

()
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Therefore, using the methods used in the proof of Theorem 2, the stability of system (2.24)
can be proven.

Note that [ f(¢)dt can diverge, while in the variable 7, a similar integral converges.

to

Thus, the transition to a constant delay system makes it possible to obtain more accurate
results on the asymptotic behavior of solutions to perturbed systems.
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ACUMIITOTNYECKUE CBOMCTBA HEKOTOPBIX
CUCTEM HEVNTPAJIbBHOT'O TUIIA C JIMHEMHBIM
3AIIA3IBIBAHUEM

B. I'. I'pebernuwiuxos

Nzyugatorca auddepeHimaabubie ypaBHEHNS C JUHEHHBIM 3alIa3IbIBAHAEM HEeATPaJIb-
HOI'O THIIA. YpaBHEHUsI C JIMHEHHBIM 3alla3JIbIBaHEeM BCTPEYAIOTCS B 3a/adax MeXaHUKH,
6uoJtornn, 3KOHOMUKEe. OCOOEHHOCTHIO TAKUX yPABHEHMIA SIBJISIETCS] HEOIPDAHMYIEHHOCTDH 3a-
IIa3IbIBaAHU, YTO CYLIECTBCHHO Cy2KaeT IIPUMEHUMOCTDb TPAJJUIIMOHHBIX METOA0B JJIs UCCIe-
JIOBaHUS 33189 YCTONYUBOCTU CUCTEM OA00HOro Tuma. OMHUM U3 [OAXOI0B IIPU U3y IEeHUN
ACUMIITOTUYECKUX CBOICTB ABJIAETCH 3aMEHa apryMEHTa IIPU 3TOM CUCTEMa CBOJUTCA K CHU-
CTeMe C INOCTOAHHBIM 3alla3/IbIBAHUEM, HO IIPA ITOM B IIPABOIl YACTU IIOJIyYE€HHOU CUCTEMBbI
IOSABJISIETCA IKCIOHCHIIUAJIbHBIA MHOXKUTE/Ib U IIpaBagd 4acThb IIOJYYEeHHOI CUCTEMBbI CTaHO-
BUTCSI HEOIPAHUYEHHO 1Ipu ¢ — 00. ACUMITOTUYECKHE CBOMCTBA cucTeM 0e3 HeATpaIbHbIX
YWIEHOB M3y4aJiuch apropaMu paxee. C yd4eToM acUMITOTHYECKHX OCOOEHHOCTEH 3TUX CH-
cTeM (663 HEUTPaJIbHBIX 4JI€HOB B IPABOil qaCTH) OPOU3BOJIUTCA AHAJIN3 ACUMITOTAYECCKUX
CBOICTB (OFpaHI/I‘{eHHOCTI), YCTOHYUBOCTDh U ACUMIITOTUYECKASA yCToﬁqHBOCTb) HEKOTOPBIX
CUCTEM y2Ke HeHTpaJIbHOro Tulia. II0CKOIbKY CBOMCTBO yCTOMYMBOCTH SIBJIsieTCsi O0OJIee TOH-
KUM CBOICTBOM HEXKEJIM CBOMCTBO aCUMIITOTUYECKON YCTOMYUBOCTU UCCJELYEeTCdA CUCTEMa
HEeHTPaJIbHOI'O TUIIA C BOSMYIICHUAMU, KOTOPad (HeBO3MyILLeHHa$I) ABJIFETCH IIPOCTO yCTOM-
YUBOM.

Karouesvie caosa: ycmotinugocmys; GCUMMIMOMUYECKAA YCMOTUBUBOCTNb; PYHKUUOHAADL

Jlanynosa-Kpacosckozo.
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