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The paper studies differential equations with linear delay of neutral type. Equations
with linear delay occur in problems of mechanics, biology, and economics. A feature of
such equations is that the delay is unbounded, which significantly reduces the applicability
of traditional methods for studying stability problems for similar systems. One of the
approaches to studying asymptotic properties is to replace the argument. The system is
reduced to a system with a constant delay, but in this case an exponential factor appears
on the right side of the system obtained, and the right side of the resulting system becomes
unbounded as t > ∞. The asymptotic properties of systems without neutral terms were
studied by the authors earlier. Taking into account the asymptotic properties of these
systems (without neutral terms on the right side), an analysis of the asymptotic properties
(boundedness, stability and asymptotic stability) of some systems of a neutral type is carried
out. Since the property of stability is a more subtle property than the property of asymptotic
stability, we study a system of neutral type with perturbations, which is simply stable when
unperturbed.
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Introduction

A large list of systems with linear or proportional delay occurring in problems of
physics, mechanics, biology, economics, queuing theory, etc. is given in [1]. The papers
[2], [3], and [4] studied the systems without neutral terms and those reducible to them. In
particular, the problem of vertical oscillations of a locomotive pantograph runner passing
through the elastic support was considered in [4]. When moving away from the support, it
is necessary to consider equations of neutral type. Among the works devoted to the study
of neutral type systems, we note [5] and [6]. We consider a linear normalized space Rm, in

which we define the norm of the vector ‖w‖ =
m
∑

j=1

|wj| w = wj
⊤, where wj (j = 1, 1, ...m)

are the components of the vector w and ⊤ is the transpose sign, for example, by equality

‖w‖ =
m
∑

j=1

|wj|. We define the norm of the matrix D = dij(i, j = 1, ..., m) in accordance

with the norm of the vector [7, p.12]: ‖D‖ = max
j

∑

i

|dij|). This choice is due to the fact

that the norm of a matrix is defined in almost the same way as the norm of a vector. We
also consider the norm of the vector function w(τ) on the interval τ ∈ [0, σ]:

‖w(τ)‖σ = sup
0≤τ≤σ

‖w(τ)‖, σ = − ln(µ). (0.1)

We will need the norm on the segment in the future, since we are interested in limited
solutions and intend to apply the apparatus of the theory of variable systems to study their
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properties [8, p. 23]. Accordingly, in the future replacement of the argument τ = ln(t/t0),
the initial system with linear delay is led to a system with constant delay. We give some
definitions necessary in the future [9, p.161]

Definition 1. A continuous solution to a neutral type system with delay σ = const
σ > 0

dx(τ)/dτ = A(τ)x(τ) +B(τ)x(τ − σ) +R(τ)dx(τ − σ)/dt, τ ≥ τ0, (0.2)

determined by a continuously differentiated initial vector-function φ(ξ): τ0 − σ ≤ ξ ≤ τ0,
is called bounded if there is a constant C > 0, such that boundedness of the solution
x(t, φ(ξ), φ′(ε)) follows from the inequality ‖x(τ)‖+ ‖x′(τ)‖ < C.

Definition 2. A solution to a neutral type system with delay σ = const, σ >
0 x(τ, φ(ξ), φ′(ξ)) is called stable if, for any ε > 0, there is δ(ε) > 0 such that
‖x(τ, φ(ξ), φ′(ξ))‖ < ε, τ ≥ τ0 as soon as ‖φ(ξ)‖+ ‖φ′(ξ)‖ < δ.

Definition 3. If x(τ, φ(ξ), φ′(ξ), being stable, has also the property of
lim
τ→∞

x(τ, φ(ξ), φ′(ξ)) = 0, then the solution is asymptotically stable.

If we now take into account the norm of the vector function defined by equality (0.1),
then with this normalization, the linear space of continuous vector functions will be a
Banach space [8, p.162]. We denote it as C0. In the future, we will use some properties
of this space. In addition, taking into account the introduced definitions of stability and
asymptotic stability, we will consider the space C1 which is the space of continuous vector
functions that have a continuous derivative [9, p.159]. Since for linear systems, the uniform
boundedness of the solution implies Lyapunov stability [5, p.194], and due to the fact that
the authors have previously obtained asymptotic estimates for some of the systems under
study using similar uniform estimates which we will use in the future, we will often prove
the uniform boundedness of linear time delay systems.

Consider a linear homogeneous system of neutral type with a delay linearly dependent
on time (argument)

dx(t)/dt = Ax(t) +Bx(µt) + R̂(t)dx(µt)/dt, t ≥ t0 > 0, µ = const, 0 < µ < 1. (0.3)

The solution to the system (0.3) is defined on the initial set s ∈ [µt0, t0] by the vector
function φ(s) ∈ C1. A and B are constant matrices m × m, R(t) is a continuously
differentiable m × m matrix, and x(t) ∈ Rm. By replacing the argument τ = ln(t/t0),
we obtain a system with constant delay σ = −ln(µ), σ > 0.

dz(τ)/dτ = t0e
τ [Az(τ) +Bz(τ − σ)] + µR(τ)dz(τ − σ)/dτ, τ ≥ 0. (0.4)

σ = − ln(µ), σ > 0. Here R(τ) = R̂(t0e
τ ). We will study the question of the system (0.4)

stability depending on the properties of the matrices A,B, and R(τ).

1. Boundedness of the Solution of a System Without Neutral
Members

Let us first consider the asymptotic behavior of the system without neutral terms. Let

Re(λj) < 0, j = 1, ...m, (1.1)

where λj are the eigenvalues of matrix A. Therefore, there is a value β0 > 0: −β0 =
maxj(Re(λj)) + ε, Re(λj) < −β0. Then, along with this, we assume that the eigenvalues

2023, vol. 10, no. 4 27



B. G. Grebenshchikov

ρ of the matrix −A( − 1)B satisfy the inequality |ρ| ≤ 1, while all eigenvalues |ρk| = 1
correspond to Jordan blocks of size 1 [8, p.21] .

Theorem 1. When the conditions imposed on the eigenvalues λ given at the (1.1) and
|ρ| ≤ 1, (while all eigenvalues |ρk| = 1 correspond to Jordan blocks of size) the solution of
the system

dy(t)/dt = Ay(t) +By(µt) (1.2)

uniformly bounded.
Proof. Having differentiated both parts of system (1.2), we obtain a system of the form

(dy′(t))/dt = Ay′(t) + µBy′(µt), t > t0/µ, y′(t) = dy(t)/dt. (1.3)

It is known [9, p.20] that for t > t0/µ, a solution to system (1.3) exists. Then, due to
the fact that the inequality |ρj| < 1 holds for the eigenvalues ρ̄j of the matrix −µA−1B
(taking into account (1.2)), the estimate follows from the results of work [2]

‖y′(t)‖ ≤ M(t/t0)
−β sup

τ∈(µt0≤s≤µ(−1)t0)

‖y′(s)‖, M, β = const, M > 1, β > 0. (1.4)

The constants M and β are the same for any t0 ≥ t∗0, t
∗
0 = const, t∗0 is fixed, and t∗0 > 0).

Now, from equality (1.2) we obtain the inhomogeneous difference matrix equation

y(t) = −A−1By(µt) + A−1y′(t). (1.5)

Assuming that the value y’(t) is inhomogeneity, we write the solution to system (1.5) using
the formula for variation of constants [8]:

y(t) = (−A−1B)nφ(µn+1t) +

n
∑

j=0

(

µ( − A−1B)
)j
A−1y

′

(µjt). (1.6)

In view of the assumptions regarding the eigenvalues of the matrix −A−1B, the following
inequality holds:

‖(−A−1B)n‖ ≤ M1, M1 = const, M1 > 1, n = 1, 2, ... (1.7)

Note that if we do not take into account the properties of the eigenvalues of the matrix
A−1B, but only taking into account the estimate

‖expA(t− s)‖ < M0exp−β0(t− s), M0 = const, M0 > 1, (1.8)

when writing the solution to system (1.2) in integral form (considering the terms with
delay to be inhomogeneous), then, giventhis integral solution to system (1.2), we have the
inequality

sup
t∈[t0,µ−1t0]

‖y′(t)‖ ≤ [‖A‖K0 + ‖B‖] sup
t∈[µt0,t0]

y(t), K0 = M0[1 +
‖B‖
β0

] (1.9)

Hence from (1.4), (1.6), (1.9) we have the estimate

yn ≤M1

[

sup
t

‖y0(t)‖+ ‖A−1‖M1

n−1
∑

j=0

‖y′j‖
]

<M1

{

1 + ‖A−1‖
[‖A‖K0 + ‖B‖

µ(1− µβ)

]}

sup
t

‖y0‖,
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yn = sup
t∈(µ1−n,µ−n]

‖y(t)‖. (1.10)

From estimate (1.10) it follows that the solution of system (1.2) is uniformly bounded
under the boundedness ‖y0(t)‖.

As follows from [5, p. 194], due to the uniform boundedness of the solution to the
linear system (2), its solution is stable. Note that the condition under which all eigenvalues
|ρk|=1 correspond to Jordan blocks of size 1 is essential. If this condition is not met, the
degenerate (difference) system

ȳ(t) = −A−1Bȳ(µt)

is unstable. It is shown in [10] that in this case the solution to the original system (2) is
also unstable.

The asymptotic stability of systems of the form (0.4) for sufficiently small µ was studied
earlier in [6]. The instability of some systems, such as (0.3), for example, for positive µ
sufficiently close to unity, can be solved using alternating Lyapunov-Krasovsky functionals
of type

V = Ŵ (x) +

m
∑

j=1

νj

t
∫

µt

x2
j (s)ds,

where W (x) is a quadratic form (not necessarily positive definite); scalar values νj > 0.
Let us give a simple example. Consider the first order equation

dx(t)/dt = ax(t) + b(t)x(µt) + r̄(t)dx(µt)/dt (1.11)

where a = const, a > 0, b(t), and r̄(t) are scalar functions of time (argument) t. Consider
the equation without neutral terms

dx0(t)/dt = ax0(t) + b(t)x0(µt) (1.12)

To obtain sufficient conditions for the instability of the solution to equation (1.12), for
the instability of the solution to equation (1.12), we introduce the functional V 0(x0, t) =

(x0)2 + ᾱ
t
∫

µt

(x0)2(s)ds. Here the constant ᾱ is negative. Assuming ᾱ = −a, calculating the

derivative dV 0(x0, t)/dt = a(x0)2+2b(t)x0(t)x0(µt)+µa(x0(µt))2 by accoding of equation
(1.12), and requiring positive definiteness of the resulting quadratic form of the variables
x0(t), x0(µt) [9, p.147], we obtain sufficient conditions for the instability of the solution to
shortened equation (1.12)

a > 0, |b(t)| < √
µ(a− ε), (1.13)

where ε is a sufficiently small positive number. In fact, there is a region V > 0, the
boundaries of which are the curve of form x(t) ≈ O(e(a−ε)t)) [1] and the line x = 0. In
this region, the derivative dV 0(x0, t)/dt is also definitely positive, therefore, by virtue of
the analogue of Chetaev’s theorem [5, p. 182], this implies instability of the solution to
equation (1.12).

Let us now consider a shortened system (i.e. a system without neutral terms, resulting
from system (0.4) To study the instability of such systems, one can use alternating
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functionals of the form

V1(τ, z(τ), zτ ) =
e−τ

t0
W (z) +

m
∑

j=1

νj

τ
∫

τ−σ

z2j (s)ds, (1.14)

W (z) – is a quadratic form (not necessarily definitely positive), and νj are constants. In
this case, using the functional

dz0(τ)/dτ = eτ [az0(τ) + bz0(τ − σ)], (1.15)

and calculating its derivative by virtue of a shortened equation of the form (0.4),

(dz0(τ))/dτ = eτ [az0(τ) + bz0(τ − σ)],

we get the relation

dV1(τ, z
0(τ), z0τ )/dτ = −e−τ

t0
(z0(τ))

2 + [a(z0(τ))2 + 2bz0(τ)z0(τ − σ) + a(z0(τ − σ))2].

The expression in square brackets on the right side is definitely a positive quadratic form
when the inequalities are satisfied:

a > 0, |b| < a. (1.16)

Let us show that inequalities (1.16) are sufficient conditions for the instability of the
shortened equation (1.15).

Consider the functional V1(τ, z
0(τ), z0τ ). Obviously, for the initial function φ̄0(θ) =

0 : t0 − σ ≤ (θ) < t0, φ0(t0) = t0 V1(0, z
0(0), z0τ (φ̄0(θ)=1, i.е. dV1(τ, z

0(τ), z0τ )/dτ > 0.
Assume that the solution of the shortened system is stable, i.e. ∃ 0 < m < M : 0 < m <
‖z0(τ)‖ < M (τ > 0). Then for sufficiently large τ we have the inequality V1(τ, z

0(τ), z0τ ) ≈
−

t
∫

t−σ

(m− ǫ)ds) = −(m− ǫ)σ < 0. But in the region 0 < m < ‖z0(τ)‖ < M the derivative

dV1(τ, z
0(τ), z0τ )/dτ > 0, since not only the value e−τ

t0
(z0(τ))

2 > 0 is small for sufficiently

large t0 > 0, but also the integral
∞
∫

0

e−sds = 1 converges. Consequently, the function

z0(τ) cannot remain in any bounded region 0 < m < ‖z0(τ)‖ < M̄ (τ > 0), while
V1(0, z

0(0), z0τ (φ̄0(θ)) → ∞. We obtain the instability of the solution to equation (1.15).
Obtaining sufficient conditions for instability is also possible for a variable value of b(τ),
and the instability region has the form (1.13) for µ = 1, i.e. it is wider than the region
obtained using the functional V 0(x0, t).

Let us now consider the asymptotic behavior of the solution to a first-order equation
of the form (0.4)

dz(τ)/dτ = t0e
τ [az(τ) + bz(τ − σ)] + r(τ)dz(τ − σ)/dτ.

Assume that the function r(τ) has a bounded continuous derivative. We represent this
equation in the form

d{z(τ) + r(τ)z(τ − σ)}/dτ = eτ [az(τ) + bz(τ − σ) + e−τ

t0
r′(τ)z(τ − σ)],

r′(τ) = dr(τ)/dτ.

(1.17)
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In the expression in square brackets on the right side of (1.17), for sufficiently large t0, it
is possible to neglect the term containing the multipliers of the value e( − τ)/t0 due to its
smallness [11]. Let us now consider the first approximation equation

d{z1(τ)+r(τ)z1(τ−σ)}/dτ = eτ [az1(τ)+bz1(τ−σ)] = F (τ, z1τ ) r′(τ) = dr(τ)/dτ. (1.18)

Let Z(τ, z1τ )) = z1(τ) + r(τ)z1(τ − σ). With the initial function we have chosen, the
following conditions are met:

1) 0 < V (τ, z1τ ), Z(τ, z
1
τ )) ≤ M̂

2) dV/dτ = lim
∆τ→0

inf[V (τ +∆τ)− V (τ) ≥ 0

3) if V (τ, z1τ , Z(τ, z
1
τ )) ≥ α, then dV/dτ ≥ β(α). Then, as follows from [5, p. 182], the

solution z1(τ) to the first approximation equation is unstable. Consequently, the solution
to the original equation is also unstable, which can be proven using the methods proposed

in [11] and the convergence
∞
∫

0

e−sds). Let us again consider the system (0.3) and assume

that among the eigenvalues λj of matrix A, there is an eigenvalue λ0: Re (λ0) = β̄ =
max

j
Re (λj), β̄ > 0. We assume that the matrices B(t) and R(t) are continuous and have

bounded first derivatives.

Lemma 1. If the eigenvalue λ0 exists, the solution to system (0.3) is unstable. Let us
give a brief proof of this statement.

We search particular solution in form x̄(t) = γ̄eλt. Here γ̄ is m-vector and quantity λ
— scalar. If we substitute this expression in the system (0.3), then get an expression

λγ̄eλtE = Aγ̄eλt +B(t)γ̄eλµt +R(t)d/dt
(

γ̄eλµt
)

. (1.19)

We divide both parts on the quantity eλt, we receive next correlation

λγ̄E = Aγ̄ +B(t)γ̄eλ(µ−1)t +R(t)λµγ̄eλ(µ−1)t

We believe, that Re(λ) > 0. Then two last members in right part of this correlation aspire
to zero at t → ∞. Top equation has the look

(A− λE)γ̄ = 0

and by γ̄ 6≡ 0 we obtain

detA− λE = 0.

So far so among own numbers of matrix A there is quantity λ0 and Re(λ0) > 0, then by
sufficiently large t we see, that system (0.3) has the particular decision x̄(t) of kind

x̄(t) ≈ γ̄eλ0t + o(1)(eλ0t). (1.20)

Hence, system (0.3) is unstable at any matrices B(t), R(t). Statement is proven.
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2. Study of the Asymptotic Properties of Some Systems of Neutral
Type

Let us consider the asymptotic behavior of the solution to the system (0.4), assuming
that the corresponding system without neutral terms is stable, but not asymptotically. We
also assume that the inequality is true:

‖Rj‖σ < Lq̄j, L, q̄ = const, L > 1, 0 < q̄ < 1, ‖Rj‖σ = max
τ∈[jσ,(j+1)σ]

‖R(τ)‖. (2.1)

Theorem 2. Under the conditions of Theorem 1, inequality (2.1), and the boundeness of
‖z0(τ)‖ and ‖z′0(τ)‖ values, the solution to system (0.4) is uniformly bounded.

Proof. Now it is more convenient to move to a countable system of equations on a
finite interval [0, σ], namely, by setting zn(τ) = z(τ + nσ), we obtain a countable system
of differential-difference equations

dzn+1(τ)/dτ = µ−nt0e
τ [Azn+1(τ) +Bzn(τ)] + µ−(n−1)t0e

τRn+1(τ)[Azn(τ) +Bzn−1(τ)]+

+µ−(n−2)t0e
τRn+1(τ)Rn(τ)[Azn−1(τ) +Bzn−2(τ)] + ...+

+t0e
τRn+1(τ)Rn(τ)...R2(τ)[Az1(τ) +Bz0(τ)]+

+Rn+1(τ)Rn(τ)...R1(τ)dz0(τ)/dτ, 0 ≤ τ ≤ σ, (2.2)

defined by the initial vector function z0(τ − σ) under the boundary conditions

zn+1(0) = zn(σ). (2.3)

We introduce the following operators in the Banach space:

Tn,τw(s) = Un(τ, 0)w(σ) +

τ
∫

0

Un(τ, s)B
t0e

s

µn
w(s)ds, Un(τ, s) = exp(

t0A

µn
(eτ − es)), (2.4)

that is, the stepoperator [8, p. 213], and the integral operators

TR
n+1,τw(s) =

τ
∫

0

Un(τ, s)
Rn+1(s)A

µn−1 t0e
sµn−1w(s)ds,

IRn,j(τ)w(s) =
τ
∫

0

Un(τ, s)Rn+1(s)Rn(s)...Rj+2(s)
t0
µj [B + µRj+1(s)A]w(s)ds,

j = 1, ..., n− 1,

IRn,0(τ)w(s) =
τ
∫

0

Un(τ, s)Rn+1(s)Rn(s)...R2(s)
t0
µjBw(s)ds,

DR
n (τ)w

′(s) =
τ
∫

0

Un(τ, s)Rn+1(s)Rn(s)...R1(s)w
′(s)ds, w′(s) = d/dsw(s).

(2.5)

Let’s consider some properties of the given operators. Obviously, z0n(τ), which is the
solution to the unperturbed equation, i.e., equation without neutral terms, similar to
(1.2) can be written in operator form:

z0n+1(τ) = Tn,τz
0
n(s), n = 0, 1, 2, ... (2.6)
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A very rough estimate ‖Tn,τ‖ ≤ K0 is valid. Due to the fact that the product of operators is
defined in the Banach space, the solution to the unperturbed equation can be represented
step by step in the form

z01(τ) = T0(τ)z
0
0(s),

z02(τ) = T1(τ)T0(s1)z
0
0(s) = U1(τ, 0)

[

U0(σ, 0)z0(σ) +
σ
∫

0

esBz0(s)ds

]

+

+
τ
∫

0

U1e
s1µ−1

[

U0(s1, 0)z0(σ) +
s1
∫

0

U0(s1, s)Besz0(s)ds

]

, ...

(2.7)

Generally,

z0n+1(τ)=Tn(τ)Tn−1(sn)...T2(s3)T1(s2)T0(s1)w(s), 0≤s≤s1≤s2≤ ...≤sn≤τ, τ ∈ [0, σ].

In view of the estimate (1.10), the inequality is valid for any natural N:

‖
N
∏

j=1

Tj−1(sj)‖ < M2, M2 = M1 +M1‖A−1‖
[‖A‖K0 + ‖B‖

µ(1− µβ)

]

0 ≤ s1 ≤ s2 ≤ ... ≤ sN ≤ σ.

For the rest of the integral operators, in the space C0, taking into account the relation
(0.1), in view of the norm estimate of the Cauchy matrix U(τ, s), the following very rough
estimates are valid:

‖TR
n+1(τ)‖ <

M0µL‖A‖
β0

q̄n+1, (2.8)

‖IRn,j(τ)‖ <
M0(Lµ)

n−j‖B‖
β0

(q1)
(n+j+3)(n−j) +

M0(Lµ)
n+1−j‖A‖
β0

(q1)
(n−j)(n+j) <

<
M0

β0
[‖B‖+ Lµ‖A‖](q1)n (Lµ(q1)n)n−j , q1 =

√
q̄, (2.9)

‖IRn,0(τ)‖ <
M0‖B‖

β0
(Lµ(q1)

n)n . (2.10)

For the operators DR
n (τ), due to the boundedness of the derivative z′0(τ), a similar estimate

is valid:

‖DR
n (τ)‖ ≤ (µL)nLM0

β0t0
(q1)

(n+1)(n+2) <
LM0

β0t0
(µL(q1)

n)n . (2.11)

Thus, we have obtained a family of linear operators bounded in the space C1. It is obvious
that for sufficiently large n ≥ N, the value µL(q1)

n < 1, therefore, the series

∞
∑

j=1

(µL(q1)
n)j < ∞. (2.12)

Using a formula similar to the formula for variation of constants, taking into account (2.4),
(2.5), the solution z(n+ 1)(τ) to the perturbed equation (2.2) can be represented as

zn+1(τ) = Tn(τ)zn(s) + Fn+1(τ), Fn+1(τ) = TR
n+1(τ)zn(s)+
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+IRn,n−1(τ)zn−1(s) + ... + IRn,1(τ)z1(s) + IRn,0(τ)z0(s) +DR
n (τ)z

′
0(s), (2.13)

from which, taking into account (1.1) and (2.2), we obtain

zn+1(τ) = yn+1(τ) + Tn(τ)

n−1
∏

j=1

Tj(sj+1)F1(s1)+

+Tn(τ)
n−1
∏

j=2

Tj(sj+1)F2(s2) + ... + Fn+1(τ).

(2.14)

Here yn(τ) is the solution to the finite difference system without neutral members
corresponding to the unperturbed system (1.2),

n−1
∏

j=k

Tj(sj+1)Fk(sk)=Tn−1(sn)Tn−2(sn−1)...Tk(sk+1)Fk(sk), 0≤s≤s1≤s2≤ ...≤sn≤τ ≤σ.

From (2.14), taking into account (2.7), we obtain the inequality

‖zn+1(τ)‖σ ≤ ‖yn+1(τ)‖σ +M2

n
∑

j=1

‖Fj(τ)‖σ + ‖Fn+1(τ)‖σ. (2.15)

Obviously,

‖Fk+1(τ)‖σ ≤ ‖TR
k+1(τ)‖‖zk(τ)‖σ +

k−1
∑

j=0

‖IRk,j(τ)‖‖zj(τ)‖σ + ‖DR
k (τ)‖‖dz0(τ)/dτ‖σ. (2.16)

Let us perform the reduction of similar terms at ‖dz0/dτ‖σ, ‖zj(τ)‖σ j = 1, 2, ...n in the
right part of the inequality (2.15), taking into account (2.16). By designating the coefficient
at anj to ‖zj(τ)‖σ, the coefficient at δn0 to ‖dz0/dτ‖σ, we consistently get

δn0 = ‖D0
n(τ)‖+M2

[

n−1
∑

j=0

‖DR
j (τ)‖

]

,

anj = ‖In,j(τ)‖+M2

[

n−j−1
∑

k=1

‖In−k,j(τ)‖+ ‖TR
j+1‖

]

, j = 0, 1, ..., n− 2,

ann−1 = ‖In,n−1(τ)‖ +M2‖TR
n (τ)‖, ann = ‖TR

n+1(τ)‖. (2.17)

Consider the asymptotic behavior of these coefficients, taking into account (2.8)–(2.11).
For the value δn0 from the first of the relations (2.17) we get the estimate

δn0 <
LM0

β0t0
(Lµ(q1)

n)n +
LM2M0

β0t0

n−1
∑

j=0

(Lµ(q1)
j)j .

This value is uniformly bounded by some positive constant δ due to the convergence

of the series
∞
∑

j=0

(Lµ(q1)
j)j . Let us now consider the asymptotic behavior of the values

anj , j = 0, 1, ..., n. We get estimates:

an0 <
M0‖B‖

β0

(Lµ (q1)
n)n +

M2M0(‖B‖+ µL‖A‖)
β0

n−1
∑

k=1

(Lµ(q1)
k)k +

M0M2Lµ‖A‖
β0

q,
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anj <
M0[‖B‖+ Lµ‖A‖]

β0

[(Lµ(q1)
n)n +

M2M0(‖B‖+ µL‖A‖)
β0

n−1
∑

k=j+1

(Lµ(q1)
k)k+

+
M0M2Lµ‖A‖

β0
qj+1, j = 1, 2, ..., n− 2

ann−1 <
M0[‖B‖+ Lµ‖A‖]

β0
(q1)

n(Lµ(q1)
n) +

M0M2Lµ‖A‖
β0

qn,

ann <
M0Lµ‖A‖

β0

qn+1. (2.18)

From the first inequality in (2.18) it follows that the value an0 is also uniformly bounded,
and this is proved exactly in the same methods as the estimate for ?n0 . Therefore, for the
zero approximation of the solution to the equation (2.15) we have the estimate

‖zRn (τ)‖ ≤ M̂0[‖z0(τ)‖σ + ‖dz0(τ)/dτ‖σ], M̂0 = const, M̂0 > 1, n = 1, 2, ... (2.19)

Next, consider the second estimate in (2.18). For the value anj , we have the following
presentation:

anj = (q1)
j/2

{

M0[‖B‖+ Lµ‖A‖]
β0(q1)j/2

[(Lµ(q1)
n]n +

+
M0M2(‖B‖+ Lµ‖A‖)

β0(q1)j/2

n−1
∑

k=j+1

(Lµ(q1)
k)k +

M0M2Lµ‖A‖
β0(q1)j/2

qj+1

}

. (2.20)

Consider the asymptotic behavior of the expression standing on the right in curly brackets
in equality (2.20). Let the natural number N̄ be determined as follows: LµqN̄1 ≥ 1,

LµqN̄+1
1 < 1. Enter the number L̄ = max

0≤i≤N̄
{(Lµ(q1)i)i}. Then, since 1 ≤ j ≤ n − 2,

we have the estimate

(Lµ(q1)
n)n(q1)

−j/2 < L̄(q
n2−(n−2)
2 , q2 =

√
q1 (2.21)

Consider the value (q1)
−j/2

n−1
∑

k=j+1

(Lµ(q1)
k)k = Sn. For it, we obtain the estimate

Sn < L̄[(q2)
(j+1)2−j + (q2)

(j+2)2−j + ...] < L̄
(q2)

j+1

1− (q2)2j
. (2.22)

Considering that the right term in curly brackets in (2.20) has the form M0M2Lµ‖A‖q
β0

(q2)
3j ,

taking into account the estimates (2.21),(2.22) we obtain that the values in curly brackets
in the right part (2.20) are uniformly bounded for any j. Hence we get that anj , defined by
equality (2.20), does not exceed the value K(q2)

j , K = const, K > 1. Similar estimates
can be proved for the values ann−1, a

n
0 .

Finally, we obtain that the limiting coefficients a∞j satisfy a similar inequality,
therefore, the series a∞j converges. This implies uniform boundedness of the solution to
the system (1.1) with boundedness of the functions z0(τ) and z′0(τ).

Corollary 1. If conditions of the execution of Theorem 1 and the validity of the estimate
(2.1) are fulfilled, the solution to the system (0.4) is stable.
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Proof. We have already shown that the solution to the differential-difference system
(2.2) can be represented as a solution to the perturbed inhomogeneous difference system
(2.13). The solution to the corresponding unperturbed system is uniformly bounded
(hence, stable), and estimate (2.19) is valid for it. For a perturbed system (2.13),
perturbations are expressions that do not exceed the norm of the values

∑

n

a∞n ‖zn(τ)‖σ
and the series

∞
∑

n=1

a∞n (2.23)

converges. Let us show that the solution to the perturbed system is stable. From (2.13),
taking into account (2.8)-(2.11) and (2.19), we have the following inequality:

‖zn+1(τ)‖σ ≤ M̂0[‖z0(τ)‖σ + ‖dz0(τ)/dτ‖σ] +
n

∑

k=1

a∞k ‖zk(τ)‖σ.

Therefore [2, p.70],

‖zn+1(τ)‖σ ≤ M̂0[‖z0(τ)‖σ + ‖dz0(τ)/dτ‖σ]
n
∏

k=1

(1 + a∞k ).

But the product
∞
∏

k=1

(1 + a∞k )

is bounded due to the convergence of series (2.23). Consequently, the solution to the
perturbed linear system (2.2) is uniformly bounded, and hence the solution to system
(0.4) is also stable.

Let us now consider a more complex perturbed system

dx(t)/dt = Ax(t) + (B + f(t)E)x(µt) + R̂(t)dx(µt)/dt, t ≥ t0 > 0, (2.24)

Here E is the identity matrix of the corresponding size, and f(t) is a continuously
differentiable monotonically decreasing vector function satisfying the estimate

‖f(t)‖ ≤ K̄

(

t

t0

)−ᾱ

, ᾱ, K̄ = const, K̄ > 1, ᾱ > 0. (2.25)

When estimate (2.25) is fulfilled, the solution to the perturbed system (2.24) is stable.
Indeed, if we go to the corresponding system (2.13), then for the perturbations that appear
due to the presence of f(t)) and have an estimate due to (1.5), (1.6):

‖
τ

∫

0

Ûj(τ, s)e
st̂0Bẑj(s)ds‖ ≤ M0fj(τ0)

β0
‖zj(τ)‖σ, j = 1, 2, ...n (2.26)

we see that these terms on the right side are similar to the terms in (2.13) IR(j,j−1)(τ)zj(s)
due to the convergence of the series

∑

j

(

1

µj

)ᾱ

.
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Therefore, using the methods used in the proof of Theorem 2, the stability of system (2.24)
can be proven.

Note that
∞
∫

t0

f(t)dt can diverge, while in the variable τ , a similar integral converges.

Thus, the transition to a constant delay system makes it possible to obtain more accurate
results on the asymptotic behavior of solutions to perturbed systems.
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АСИМПТОТИЧЕСКИЕ СВОЙСТВА НЕКОТОРЫХ
СИСТЕМ НЕЙТРАЛЬНОГО ТИПА С ЛИНЕЙНЫМ
ЗАПАЗДЫВАНИЕМ

Б. Г. Гребенщиков

Изучаются дифференциальные уравнения с линейным запаздыванием нейтраль-
ного типа. Уравнения с линейным запаздыванием встречаются в задачах механики,
биологии, экономике. Особенностью таких уравнений является неограниченность за-
паздывания, что существенно сужает применимость традиционных методов для иссле-
дования задач устойчивости систем подобного типа. Одним из подходов при изучении
асимптотических свойств является замена аргумента при этом система сводится к си-
стеме с постоянным запаздыванием, но при этом в правой части полученной системы
появляется экспоненциальный множитель и правая часть полученной системы стано-
вится неограниченной при t → ∞. Асимптотические свойства систем без нейтральных
членов изучались авторами ранее. С учетом асимптотических особенностей этих си-
стем (без нейтральных членов в правой части) производится анализ асимптотических
свойств (ограниченность, устойчивость и асимптотическая устойчивость) некоторых
систем уже нейтрального типа. Поскольку свойство устойчивости является более тон-
ким свойством нежели свойство асимптотической устойчивости исследуется система
нейтрального типа с возмущениями, которая (невозмущенная) является просто устой-
чивой.

Ключевые слова: устойчивость; асимптотическая устойчивость; функционалы

Ляпунова-Красовского.
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