THE LINEARIZED OSKOLKOV SYSTEM IN THE AVALOS-TRIGGIANI PROBLEM

Tamara G. Sukacheva, Alexey O. Kondyukov

Abstract


The Avalos-Triggiani problem for a linearized Oskolkov system and a system of wave equations is investigated. The mathematical model contains a linearized Oskolkov system and a wave vector equation corresponding to some structure immersed in the Kelvin-Voight incompressible viscoelastic fluid.  The theorem of the existence of the unique solution to the Avalos-Triggiani problem for the indicated systems is proved using the method proposed by the authors of this problem.

Keywords


Avalos-Triggiani problem; incompressible viscoelastic fluid; linearized Oskolkov system

Full Text:

PDF

References


Avalos G., Lasiecka I., Triggiani R. Higher Regularity of a Coupled Parabolic-Hyperbolic Fluid-Structure Interactive System. Georgian Mathematical Journal, 2008, vol. 15, no. 3, pp. 403-437. DOI: 10.1515/gmj.2008.403

Avalos G., Triggiani R. Backward Uniqueness of the S.C. Semigroup Arising in Parabolic-Hyperbolic Fluid-Structure Interaction. Differential Equations, 2008, vol.245, pp. 737--761. DOI: 10.1016/j.jde.2007.10.036

Oskolkov A.P. Initial-Boundary Value Problems for Equations of Motion of Kelvin-Voight Fluids and Oldroyd fluids. Proceedings of the Steklov Institute of Mathematics, 1989, vol. 179, pp. 137-182.

Sviridyuk G.A., Sukacheva T.G. The Avalos-Triggiani Problem for the Linear Oskolkov System and a System of Wave Equations. Computational Mathematics and Mathematical Physics, 2022, vol. 62, no. 3, pp. 427-431. DOI: 10.1134/s0965542522020105

Sukacheva T.G., Sviridyuk G.A. The Avalos-Triggiani Problem for the Linear Oskolkov System and a System of Wave Equaions. II. Journal of Computational and Engineering Mathematics, 2022, vol. 9, no. 2, pp. 67-72. DOI: 10.14529/jcem220206

Kondyukov A.O. The Linear Oskolkov System of Non-Zero Order in the Avalos-Triggiani Problem. Journal of Computational and Engineering Mathematics, 2023, vol. 10, no.3, pp. 17-23. DOI: 10.14529/jcem230302

Sukacheva T.G., Kondyukov A.O. An Analysis of the Avalos-Triggiani Problem for the Linear Oskolkov System of Non-Zero Order and a System of Wave Equations. Bulletin of the South Ural State University. Series: Mathematical Modelling, Programming and Computer Software, 2023, vol. 16, no. 4, pp. 93--98. DOI: 10.14529/mmp230407

Sukacheva T.G. The Unsteady Lianearized Model of Movement of the Incompressible Viscoelastic Liquid of High Order. Bulletin of the South Ural State University. Series: Mathematical Modelling, Programming and Computer Software, 2009, vol. 17 (150), no. 3, pp. 86-93.

Oskolkov A.P. Some Nonstationary Linear and Quasilinear Systems Occurring in the Investigation of the Motion of Viscous Fluids. Journal of Soviet Mathematics, 1978, vol. 10, pp. 299-335. DOI: 10.1007/BF01566608

Sviridyuk G.A., Sukacheva T.G. Phase Spaces of a Class of Operator Semilinear Equations of Sobolev Type. Differential Equations, 1990, vol. 26, no. 2, pp. 188-195.

Sviridyuk, G.A., Sukacheva, T.G. On the Solvability of a Nonstationary Problem Describing the Dynamics of an Incompressible Viscoelastic Fluid. Mathematical Notes, 1998, vol. 63, no. 3, pp. 388-395. DOI: 10.1007/BF02317787

Kondyukov A.O., Sukacheva T.G. Phase Space of the Initial-Boundary Value Problem for the Oskolkov System of Nonzero Order. Computational Mathematics and Mathematical Physics, 2015, vol. 55, no. 5, pp. 823-828. DOI: 10.1134/S0965542515050127

Vasyuchkova K.V., Manakova N.A., Sviridyuk G.A. Some Mathematical Models with a Relatively Bounded Operator and Additive ``White Noise''. Bulletin of the South Ural State University. Series: Mathematical Modelling, Programming and Computer Software, 2017, vol. 10, no. 4, pp. 5-14. DOI: 10.14529/mmp170401

Sviridyuk G.A., Zamyshlyaeva A.A., Zagrebina S.A. Multipoint Initial-Final Value for one Class of Sobolev Type Models of Higher Order with Additive ``White Noise''. Bulletin of the South Ural State University. Series: Mathematical Modelling, Programming and Computer Software, 2018, vol. 11, no. 3, pp. 103--117. DOI:10.14529/mmp180308

Favini A., Zagrebina S.A., Sviridyuk G.A. Multipoint Initial-Final Value Problems for Dinamical Sobolev-Type Equations in the Space of Noises. Electronic Journal of Differential Equations, 2018, vol. 2018, article ID: 128.


Refbacks

  • There are currently no refbacks.


 Save